RUNNING EXPRESSIONS:
PHYSIOLOGICAL MONITORS AND MOTION SENSORS MAPPED FOR MUSICAL
PERFORMANCE

By
JON P. BELLONA

A TERMINAL CREATIVE PROJECT
Presented to the University of Oregon School of Music and Department of Dance
in partial fulfillment of the requirements
for the degree of

Master of Music in Intermedia Music Technology

June 2011

Running Expressions is a terminal creative project prepared by Jon P. Bellona in partial
fulfillment of the requirements for the Master of Music in Intermedia Music Technology degree
in the School of Music and Department of Dance. This terminal creative project has been

approved and accepted by:

Jeffrey Stolet, Chair of the Examining Committee

Date

Committee in Charge: Jeffrey Stolet, Chair
Molly Barth
Robert Ponto

© 2011 Jon Bellona

ACKNOWLEDGEMENTS

I would like to extend my gratitude to both my parents, Steve and Kristine Bellona, for their love
and support, and to say thank you to my brother, David Bellona, for his creative insights, design
critiques, and aberrant resources that have found their way into my work. I would also like to
thank Professor Jeffrey Stolet, for without his knowledge and endearing support throughout my

graduate studies at the University of Oregon, this project simply would not have been possible.

TABLE OF CONTENTS

INTRODUCTION
PART I. UNDERLYING ARCHITECTURE (SIGNAL FLOW)
1. Musical Hardware Connections
2. Software Connections
3. Video Connections
PART II. HARDWARE
4.T-31 Coded™ Polar Heart Rate Monitor Transmitter (HRM)
5. Polar Heart Rate Monitor Interface (HRMI)
6. Nintendo Wiimotes
7. ADXL322 Dual-Axis Accelerometer
8. JeeNode wireless Tx/Rx
PART III. SOFTWARE
9. Processing
10. OSCulator
11. PacaConnect
12. Max/MSP/Jitter
12.a. Data Hub
12.a.i. Heart Rate Monitor from Processing
12.a.ii. Nintendo Wiimotes via OSC messages from OSCulator
12.a.iii. JeeNode and Accelerometers from Serial Bus
12.b. Musical Parameter Controller
12.c. Video Projection Controller

13. Kyma

10

10

12

17

18

18

18

19

20

23

23

28

PART IV. COMPOSITION AND PERFORMANCE STRUCTURE

14. Section I: Exposition
14.a. Heart Exposition
14.b. Feet Exposition

15. Section II: Development
15.a. Running on Dillard (trombones, strings, piano)
15.b. Running on Spencer’s Butte (Climax)

16. Section III: Recapitulation/Coda

APPENDIX

A.1. Controller_Kyma33_End4b.maxpat Figure Documentation
A.1.a. Exposition Sequencer
A.1.b. JeeNode Accelerometers
A.l.c. Heart Rate Monitor
A.1.d. Control Window
A.l.e. MIDI
A.1.f. Video Control
A.1.g. Wiimote Master
A.1.h. Wiimote 1
A.1.i. Wiimote 2

A.2. VPT_4.1b5_RunningExpressions.maxpat Figure Documentation
A .2.a. Videoplane Module: Running
A.2.b. Videoplane Module: Heart Rate
A.2.c. Videoplane Module: LCD
A.2.d. Preset Module

A.2.e. Movie Source Module: Running #1

40

41

41

41

42

42

42

43

44

44

47

50

61

64

67

68

78

81

86

96

102

106

109

109

114

Vi

A.2.f. Movie Source Module: Running #2
A.2.g. Movie Source Module: Heart Rate LCD display
A.2.h. Movie Source Module: Heartbeat Movie
A 2.1. Movie Source Module: Distance LCD display
A.2.j. Cue List Mixer Module
A .2 k. Mixer Module: Running
A.2.1. Mixer Module: Heart
A.3. Master’s Project Proposal
A 4. Graphical Icon Legend
A.5. Resource URLs

A.6. Included DVD Contents

121

123

124

126

126

127

128

129

132

135

135

Vii

TABLE OF FIGURES

Figure 1.1. Hardware Connections Flowchart
Figure 2.1. Software Connections Flowchart
Figure 3.1. Video Connections Flowchart
Figure 8.1. Accelerometer Spike Fluctuations
Figure 9.1. Processing optimization (before 100ms interval added)
Figure 9.2. Processing optimization (after 100ms interval added)
Figure 9.3. Additional Processing code, limits time between data requests
Figure 10.1. OSCulator Signal Flowchart
Figure 10.2. OSC messages from Max/MSP, routed to Kyma
Figure 10.3. OSC messages from Max/MSP, routed to Kyma
Wiimote messages, routed to Max/MSP
Figure 10.4. OSC messages from Wiimotes, routed to Max/MSP
Figure 11.1. PacaConnect Signal Flowchart
Figure 12.a.1. MaxLink external object
Figure 12.a.2. OSC-route external object
Figure 12.a.3. JeeNode Tx and Accelerometer Pouch
Figure 12.a.4. Data stream table of the right leg accelerometer
Figure 12.c.1. Videoplane cleanup documentation
Original patch in Presentation mode.
Figure 12.c.2. Videoplane cleanup documentation
Original patch in Editing mode.
Figure 12.c.3. Videoplane cleanup documentation
Clean patch in Editing mode.
Figure 12.c.4. Movie source cleanup documentation
Original patch in Presentation mode.
Figure 12.c.5. Movie source cleanup documentation

Original patch in Editing mode.

o w»nm B~ W

11
12
13
14
15

16
17
19
20
21
22
24

25

25

26

26

viii

Figure 12.c.6. Movie source cleanup documentation

Clean running movie source patch in Editing mode.

Figure 12.c.7. Movie source cleanup documentation

Clean LCD movie source patch in Editing mode.

Figure 13.1.
Figure 13.2.
Figure 13.3.
Figure 13.4.
Figure 13.5.
Figure 13.6.
Figure 13.7.
Figure 13.8.
Figure 13.9.

Kyma TL, with WaitUntil Sound track and MIDI note track highlighted

WaitUntil Sound Object

MIDI Output Pitch

Heartbeat Sound

Heartbeat Exposition Main Sound, Vocoder with Delays
Heartbeat Exposition Sequencer

Heartbeat Low Rumble

Road Environment Ambient Sound

Selectable Foot Sounds

Figure 13.10. Feet Exposition Waltz
Figure 13.11. Selectable Children Sounds

Figure 13.12. Development Section for Trombones, Piano, and Strings

Figure 13.13. Aorta Sound Transition

Figure 13.14. Development Section Climax, part 1

Figure 13.15. Development Section Climax, part 2

Figure 13.16. Crashing Forests Sounds, Randomly Selected

Figure 13.17. Final Piano Chord

Figure 13.18. Wind Environment Sound

Figure 13.19. Exposition Sequencer Revisited

Figure 13.20. Exposition Heartbeat Vocoder Revisited

Figure 13.21. Kyma TL, with Sections Labeled

Figure A.1.1. Controller Kyma33 End4b.maxpat Main Patch Window

Figure A.1.2. Performance Setup Order Patch Window

Figure A.1.3. Color Legend for Master Controller Max Patch

Figure A.1.a.1. Exposition Sequencer Patch Window

27

28

29
30
30
31
32
32
33
33
34
34
35
35
36
36
37
37
38
38
39
40
44
45
46
47

Figure A.1.a.2. Sequencer Control Patcher

Figure A.1.a.3. Wiimote 1 Controls Presets Patcher
Figure A.1.a.4. Sequencer Tempo Control Patcher

Figure A.1.a.5. Tap Tempo Sequencer Control Patcher
Figure A.1.b.1. JeeNode Patch Window, in Presentation mode
Figure A.1.b.2. Serial Data Input Module

Figure A.1.b.3. Serial Port Formatting Menu Patcher
Figure A.1.b.4. Serial Port Formatting Message Patcher
Figure A.1.b.5. Serial Channel Data Display Module
Figure A.1.b.6. Accelerometer Threshold Counter Patcher
Figure A.1.b.7. Foot Distance Calculator Patcher

Figure A.1.b.8. Master Foot Distance Display Module 1

Figure A.1.b.9. Master Feet Distance Calculator per Section Patcher, video control

Figure A.1.b.10. Master Accelerometer Control and Routing Module 2
Figure A.1.b.11. Feet Accelerometer Tempo Control Patcher

Figure A.1.b.12. Master Feet Counter Calculator Patcher, controls video
Figure A.1.b.13. Master Feet Distance Calculator Patcher, lcd display
Figure A.1.b.14. Accelerometer Sends to Kyma Patcher part 1

Figure A.1.b.15. Accelerometer Sends to Kyma Patcher part 2

Figure A.1.b.16. Master Accelerometer Control Module 3

Figure A.1.b.17. Master Feet Counter Control Patcher

Figure A.1.b.18. Master Feet Counter Test Patcher

Figure A.1.c.1. Heart Rate Routing Patch Window

Figure A.1.c.2. Heart Rate Controls Movie Playback Patcher

Figure A.1.c.3. Heart Rate Controls Heartbeat/Aorta Audio Playback Patcher
Figure A.1.c.4. Heart Rate Controls Switch Gate Patcher

Figure A.1.c.5. Master Heartbeat Audio Volume Control Patcher

Figure A.1.d.1. Performance Control Patch Window, in Presentation mode

Figure A.1.d.2. Performance Control Patch Window, in Patcher mode

48
48
49
49
50
51
51
52
52
53
54
54
55
55
56
57
57
58
58
59
59
60
61
62
62
63
63
64
65

Figure A.1.d.3. Performance Control Timer as Counter Patcher

Figure A.1.d.4. Performance Control Timer as Time Patcher

Figure A.1.e.1. MIDI Controls Patch Window

Figure A.1.f.1. Video Control Patch Window, overview of Window layout
Figure A.1.f.2. Video Control MIDI routing, part 1

Figure A.1.f.3. Video Control MIDI routing, part 2

Figure A.1.f.4. Video Section Command Descriptions Patcher

Figure A.1.f.5. QuickTime Movie ‘gmetro’ Toggle Module

Figure A.1.1.6. QuickTime Movie #1 ‘qmetro’ Toggle Patcher

Figure A.1.£.7. QuickTime Movie #2 ‘qmetro’ Toggle Patcher

Figure A.1.£.8. QuickTime Movie #4 ‘qmetro’ Toggle Patcher

Figure A.1.1.9. QuickTime Movie #5 ‘qmetro’ Toggle Patcher

Figure A.1.£.10. QuickTime Movie #6 ‘qmetro’ Toggle Patcher

Figure A.1.f.11. QuickTime Frame Rate Multiplier Control Module

Figure A.1.f.12. QuickTime Movie #1 Frame Rate Multiplier Control Patcher
Figure A.1.£.13. QuickTime Movie #2 Frame Rate Multiplier Control Patcher
Figure A.1.f.14. Performance Control Window Comment Field Module
Figure A.1.£.15. QuickTime Movie Selection Module

Figure A.1.£.16. QuickTime Movie #1 Selection Patcher

Figure A.1.f.17. QuickTime Movie #2 Selection Patcher

Figure A.1.f.18. QuickTime Movie ‘srcrect’ Pixel Jitter Toggle Module
Figure A.1.£.19. QuickTime Movie Fade Control Module

Figure A.1.£.20. QuickTime Movie Main Mixer Fade Control Patcher

Figure A.1.£.21. QuickTime Movie Running Movie Fade Control Patcher
Figure A.1.£22. QuickTime Movie Heartbeat Movie Mixer Fade Control Patcher
Figure A.1.f.23. QuickTime Movie Heartbeat Movie Fade Control Patcher
Figure A.1.f.24. LCD Display Fade Control Patcher

Figure A.1.£.25. Feet Accelerometer Section Distance Counter Reset Module

Figure A.1.£.26. Miscellaneous QuickTime Movie Control Module

66
66
67
68
68
69
70
71
71
71
72
72
72
73
73
73
73
74
74
74
75
75
75
76
76
77
77
77
78

xi

Figure A.1.£.27. Master Video Control Switch Module

Figure A.1.g.1.
Figure A.1.g.2.
Figure A.1.g.3.
Figure A.1.g.4.
Figure A.1.g.5.
Figure A.1.h.1.
Figure A.1.h.2.
Figure A.1.h.3.
Figure A.1.h.4.
Figure A.1.h.5.
Figure A.1.h.6.
Figure A.1.h.7.
Figure A.1.h.8.
Figure A.1.h.9.

Wiimote Master Control Patch Window

All-Mute Wiimote Master Control Module

Exposition Fade-Out Wiimote Master Control Module
Final Piano Chord Wiimote Master Control Module

Butte Pan Video Fade-In Patcher

Wiimote 1 Control Patch Window, overview of Window layout
Wiimote 1 Heart Rate Monitor Exposition Control Module
Wiimote 1 Feet Exposition Control Module

Environment Sound Select Patcher, in Feet Exposition
Feet Sound Mute Patcher, in Feet Exposition

Wiimote 1 Development Section Control Module, part 1
Wiimote 1 Development Section Control Module, part 2
Wiimote 1 Development Section Control Module, part 3
String Mute Patcher

Figure A.1.h.10. Panning of Trombones Control Patcher

Figure A.1.h.11. String Harmony Pitch Selection Patcher

Figure A.1.h.12. Wiimote 1 Development/Climax Section Control Module

Figure A.1.i.1.
Figure A.1.1.2.
Figure A.1.i.3.
Figure A.1.1.4.
Figure A.1.1.5.
Figure A.1.1.6.
Figure A.1.1.7.
Figure A.1.1.8.

Wiimote 2 Control Patch Window, overview of Window layout
Wiimote 2 Heart Rate Monitor Exposition Control Module
Filter Control Presets Patcher

Filter Preset Selection Patcher

Interpolation Between Presets Patcher

Time Constant Parameter Interpolation Patcher

Side Level Parameter Interpolation Patcher

Bandwidth Parameter Interpolation Patcher

Figure A.1.1.9. Wiimote 2 Feet Exposition Control Module

Figure A.1.1.10
Figure A.1.i.11

. Children Audio File Selection Patcher

. Road Ambience Sound Playback Rate Interpolation Patcher

78
78
79
79
80
80
81
81
82
82
83
83
84
84
84
85
85
86
86
87
87
88
88
89
89
90
90
91
91

Xii

Figure A.1.1.12. Wiimote 2 Development Section Control Module

Figure A.1.i.13. Panning of Trombones Control Patcher

Figure A.1.i.14. Wiimote 2 Development/Climax Section Control Module, part 1

Figure A.1.1.15. Wiimote 2 Development/Climax Section Control Module, part 2

Figure A.1.i.16. Trumpet Time Index Selection Patcher

Figure A.1.i.17. Trumpet Time Index Interpolation Patcher

Figure A.1.1.18. Breath Rate Calculator Selection Patcher

Figure A.1.1.19. Breath Rate Interpolation Patcher

Figure A.2.1.
Figure A.2.2.
Figure A.2.3.
Figure A.2.4.
Figure A.2.5.
Figure A.2.6.
Figure A.2.7.
Figure A.2.8.
Figure A.2.9.

VPT 4.1b5_RunningExpressions.maxpat Main Patch Window
VPT Main Patch Window, in Patcher mode, part 1

VPT Main Patch Window, in Patcher mode, part 2

VPT Keyboard Shortcuts

Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 1
Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 2
Custom Coordinates Control Patcher

Custom Coordinates Input Patcher

Conditional Statement Custom Coordinates Patcher

Figure A.2.a.1. Videoplane Running, in Presentation mode

Figure A.2.a.2. Videoplane Running Patch Window, overview of Window layout

Figure A.2.a.3. Videoplane Position Module

Figure A.2.a.4. Videoplane Color Swatch Module

Figure A.2.a.5. Videoplane Color Masks Patcher

Figure A.2.a.6. Videoplane ‘jit.gl.render’ Control Module

Figure A.2.a.7. Videoplane Positioning Control Module

Figure A.2.a.8. Videoplane Movie Masks Module

Figure A.2.b.1. Videoplane Heart Rate, in Presentation mode

Figure A.2.b.2. Videoplane Heart Rate, Position Control Module

Figure A.2.b.3. Videoplane Heart Rate, ‘jit.gl.render’ Control Module

Figure A.2.b.4. Videoplane 3D Positioning Control Module

92
92
93
93
94
94
95
95
96
97
98
98
99
100
101
101
102
102
103
103
104
104
105
105
106
106
106
107
108

Xiii

Figure A.2.b.5. Videoplane Custom Corner Positioning Control Module
Figure A.2.c.1. Videoplane LCD, in Presentation mode

Figure A.2.d.1. Preset Module, in Presentation mode

Figure A.2.d.2. Preset Module, in Patcher mode, part 1

Figure A.2.d.3. Preset Module, in Patcher mode, part 2

Figure A.2.d.4. Preset Module Controls Patcher

Figure A.2.d.5. Preset Module Recall Patcher

Figure A.2.d.6. Preset Module Data Confirmation Patcher

Figure A.2.e.1. Movie Source Running Patch Window, in Presentation mode
Figure A.2.e.2. Movie Source Running Patch Window, in Patcher mode
Figure A.2.e.3. Movie Source Select Module

Figure A.2.e.4. Movie Source External Select Control Module

Figure A.2.e.5. Movie Source Video Control Variables Module

Figure A.2.e.6. Movie Source Variables Assignment Patcher

Figure A.2.e.7. Movie Source Video Position Interpolation Calculator Patcher
Figure A.2.e.8. Movie Source Position Interpolation Timer Patcher

Figure A.2.e.9. Movie Control Module

Figure A.2.e.10. Interpolation for ‘srcrect’ X-Axis Jitter Patcher

Figure A.2.e.11. Interpolation for ‘srcrect’ Y-Axis Jitter Patcher

Figure A.2.f.1. Movie Source Running #2 Patch Window, in Patcher mode
Figure A.2.f.2. Wiimote Controls Panning Video Patcher

Figure A.2.£.3. Wiimote 1 Controls Kyma 8-channel Panning Patcher
Figure A.2.g.1. Movie Source Heart Rate LCD Display, in Patcher mode
Figure A.2.h.1. Movie Source Heartbeat Patch Window, in Presentation Mode
Figure A.2.h.2. Movie Source Heartbeat Patch Window, in Patcher Mode
Figure A.2.h.3. Movie Select Heartbeat Module

Figure A.2.h.4. Movie Heartbeat Video Control Variables Module

Figure A.2.h.5. Movie Control Heartbeat Module

Figure A.2.i.1. Movie Source LCD Patch Window

108
109
109
110
111
112
113
113
114
114
115
115
116
116
117
118
118
119
120
121
122
122
123
124
124
125
125
125
126

Xiv

Figure A.2.j.1. Cue List Mixer Patch Window, in Presentation mode
Figure A.2.j.2. Cue List Mixer Patch Window, in Patcher mode
Figure A.2.k.1. Heartbeat Movie Mixer Patch Window

Figure A.2.1.1. Running Movie Mixer Patch Window

Figure A.4.1. Hardware icons

Figure A.4.2. Connection Standards and Protocols icons

Figure A.4.3. Software icons

126
127
127
128
132
133
134

XV

INTRODUCTION

Running Expressions is a fusion of my two passions, electronic music and running. The
result, a live electronic performance work, not only challenged my technical and compositional
abilities, but also kindled my interests in human performance within electronic music. Running
acted as the inspirational seed for both the music and the musical journey, and by taking bio-
signal, or physiological, information from the physical action of running, I facilitated the body in
the creation and the control of music. Running then also served as a performance and a
functional control over musical parameters.

Not only did I choose the human body as a way to generate data streams for the creation
of music, but I necessitated the human performer inside an electronic work. By making the music
rely on physiological data, the human became integral to the creation of the music. The music
cannot exist without the human’s input, and by so doing, I inject the human back into electronic
music. I chose this dependent relationship for two reasons.

First, bringing the human performer back into electronic music helps shift electronic
music closer to the music traditions of our past. Throughout the history of man, music has been
created through the transference of acoustic energy enacted by humans. There is a direct
relationship between sound and musical action. Because the energy for live electronic music is
created through transductions recorded as digital data (0s and 1s), there is not always a direct
relationship between sound and musical action. This indirect correlation between sound and
action should not mean that the human performer’s presence is lost inside the technology. For in
the performance hall, I firmly believe there are benetits to having a human performance of
electronic music— the performer serves as an accessible gateway to the music, and can help
engage the audience— even if these particular performer benefits stem directly from the

perceptions of acoustic music and concert traditions.

Second, there are fewer works for live electronic music utilizing alternative controllers
than electro-acoustic and fixed-media compositions.! Ever since the first musique concréte
concerts of the 1950s and the introduction of computer music in the late 1950s, a tradition has
evolved for fixed-media compositions and acoustic music with electronic accompaniment.
Composers in the last sixty years have written fixed-media works, acousmatic music, and works
for acoustic instruments with live electronics, but have largely ignored the genre of electronic
music for real-time performance using recent technologies, due in part to the limitations of
computer processing power. I chose to write a real-time electronic performance using alternative
controllers because I felt, and still feel, that it is important to engage electronic works involving
human performers, while, at the same time, to explore and perhaps help develop musical

traditions for live electronic music.

Running Expressions uses three different alternative controllers— a heart-rate monitor, two
Nintendo Wiimotes, and two dual-axis accelerometers. These three controllers are mapped to
control musical parameters and to trigger sound events in real time. The work demands a human
performer because the controllers require physiological data and motion for actualization. I
explored the links of human motion and physiological data to sound and musical performance
throughout the compositional process this past year.

Running Expressions also implements various software components and communication
protocols, learned during my studies at the University of Oregon. In this documentation I will
give a brief overview of the signal flow of all hardware and software components used in
Running Expressions. Next, | will explain each component in detail, beginning with the various
hardware components, followed by an in-depth review of each software component. Lastly, I will
discuss the compositional and performance structure. The main topics (signal flow, hardware,
software, composition) cohesively detail the development and the execution of Running

Expressions. Detailed figures, including explanations, will appear throughout.

! For example, examining the works realized at CCRMA 1968-1992, there are 135 fixed-media compositions, 66
electro-acoustic compositions (acoustic instruments with tape), and 22 live-electronic works. These 22 works
included compositions which incorporate either some type of electronic instrument or live-electronic manipulation
of acoustically generated sounds. Of these twenty-two works, only seven compositions were written solely for live-
electronics. The first of these seven compositions did not appear until 1988.

PART I. UNDERLYING ARCHITECTURE (SIGNAL FLOW) 2

1. Musical Hardware Connections

Running Expressions was written for one Polar Heart-Rate Monitor, two Nintendo
Wiimote controllers, and two ADXIL.322 Dual-Axis accelerometers. The Heart-Rate Monitor
attaches to the performer’s chest, the Nintendo Wiis to the wrists, and each accelerometer to one
leg, just below the knee. The Polar Heart-Rate Monitor sends information via a magnetic field to
a Polar Heart Rate Monitor Interface, which sends its data to the computer via a standard USB
cable. The Nintendo Wiimotes communicate to the computer via Bluetooth, and the dual-axis

accelerometers via a high frequency radio signal using JeeNode Tx/Rx microcontrollers.

Polar Heart Rate Monitor
Magnetic Field
(80 - 100 ¢m)

€3 Bluetooth ‘“l ol iriendo

(—m Bluetooth
(100 m)

-

JeeNode USB Bub ‘Ill

) RFM12B radio
\ / @ 915 MHz

(120 m)

ADXL332 Accelerometer
and
JeeNode v4

Figure 1.1. Hardware Connections Flowchart

2 For a complete legend of all graphic icons used in the signal flow diagrams, please see the Appendix. Figures A.4.1
—-AA43.

2. Software Connections

Using the computer, I poll each data stream with three different programs. Processing
polls the heart-rate monitor interface for heart rate information, OSCulator polls the Nintendo
Wiis for button and accelerometer information, and Max/MSP/Jitter polls the JeeNode Rx USB
bub for accelerometer data of the X and Y axes. All sounds are generated by Kyma, but
controlled in real time with MIDI and OSC messages sent from Max/MSP/Jitter. In this way,
Max/MSP/Jitter serves as the master control software, and Kyma as the sound synthesis
software/hardware engine. All other software components serve to bridge Kyma and Max/MSP/
Jitter together, functioning as either direct communication links (PacaConnect, OSCulator) or

data routers to/from Max/MSP and Kyma (OSCulator, Processing).

4
-Eﬁ»
iy
@
|
=
1

Figure 2.1. Software Connections Flowchart, includes connections to external devices.

3. Video Connections

Max/MSP/Jitter also controls the playback of video. Max/MSP/Jitter projects four
different video planes at any given time, displaying video and LCD information in a 3D
projection environment. Kyma sends a total of fourteen MIDI note messages to Max/MSP/Jitter

to trigger the various video changes throughout the piece.

Figure 3.1. Video Connections Flowchart. Compiled Kyma Timeline on Paca(rana) sends MIDI messages
via PacaConnect that serve as video controls within Max/MSP/Jitter.

PART II. HARDWARE 3

To actuate the work, “Running Expressions” uses several pieces of hardware. Each
hardware device discussed below was selected after research in the fields of wireless network
communication, physical sensors, and data protocols. There were different reasons for selecting

each device, and I weigh the positive and negatives of each decision.

4. T-31 Coded™ Polar Heart Rate Monitor Transmitter (HRM)

After failed attempts to find a working a solution using the ANT+ wireless protocol with
Garmin heart rate monitor and foot pod products, I turned to the largest and oldest manufacturer
of heart rate monitors, Polar. The T-31 Coded™ Heart Rate Transmitter measures the
electrocardiogram (ECG), which is the electrical signal produced by a heart in motion. Two
electrodes must be wet and attached to the front part of the chest in order to transmit any signal,
and the T-31 HRM uses a magnetic field to transmit data. I chose this particular heart rate
monitor because I found a compatible computer interface. The transmitter and interface led me to
a simple and stable solution after months of coding problems with the ANT+ protocol. The
limitation of the HRM is the susceptibility to other electromagnetic signals. While the T-31 uses
a Polar-coded signal in order to minimize interference, the physical range of the device must be
limited in order to ensure a stable connection. This limited range was ultimately determined by

the heart rate monitor interface.

5. Polar Heart Rate Monitor Interface (HRMI)

SparkFun, an online retailer of personal electronic projects, distributes an interface for the
Polar T-31 Transmitter. Designed by DanJulioDesigns#, the Polar Heart Rate Monitor Interface
converts ECG signals sent by the Polar Heart Rate Monitor into ASCII numbers (0-255). These

ASCII numbers are separated by spaces, terminate with a carriage return, and sent serially, via

3 Pictures of representative hardware icons may be found in the Appendix. Figure A.4.1.

4 Dan Julio Designs, “Sparkfun HRML,” http://danjuliodesigns.com/sparkfun/sparkfun.html (accessed April 21,
2011).

http://danjuliodesigns.com/sparkfun/sparkfun.html
http://danjuliodesigns.com/sparkfun/sparkfun.html

USB, to the host computer. I use a Processing sketch to send commands to the HRMI and receive
encoded heart rate information from the HRMI (Chapter 9). The main limitation of the HRMI
device is the physical range of signal transfer between the HRM and the HRMI. Distances cannot
exceed 80cm to 100cm (31.5 to 39.3 inches) before the signal begins to drop. Dropping of the
ECG signal causes irregularity in the heartbeat information received by the HRMI, which I found
impacts the composition control mappings, and due to these mappings, can cause audible

changes in the music.

6. Nintendo Wiimotes

The Nintendo Wii Remote (or Wiimote) is a wireless game controller that features
embedded accelerometers, gyroscope, infrared light, and button controls. The controller sends
data via Bluetooth. Bluetooth is a wireless technology standard for exchanging data over short
distances. I accessed the Wiimote data through OSCulator (Chapter 10), which incorporates a
Wiimote Bluetooth setup panel as part of its software. Because of the Wiimote’s wireless
capabilities, amount of controls, ease of setup, and stable connection, I selected the Wiimote to
serve as the composition’s master controller, capable of triggering sound events, music section
changes, and controlling musical parameters in real time. For Running Expressions, 1 only
utilized the Wiimote’s accelerometer and button controls. I did not use the infrared light, the Wii
Motion Plus (a Tuning fork gyroscope that accents the accelerometer data), or any other Wiimote

accessories, like the Wii Nunchuk.

7. ADXL322 Dual-Axis Accelerometer

Due to complications with the ANT+ wireless protocol, I was also unable to use the
Garmin Foot Pod, a device for tracking a runner’s cadence, speed and distance. Without this set
of information, I would have been unable to capture and transfer the physical act of running into
performance controls. Therefore, I needed a solution to track the running and walking motion of
legs.

I found a solution using the ADXL322 Dual-Axis Accelerometer. The accelerometer

measures dynamic acceleration resulting from motion, shock, or vibration and outputs voltage

signals. With an accelerometer, I would be able to generate data based upon the motion of the
legs. In preparation of the final performance, I sought after my ideal performance situation— a
wireless connection to the accelerometers attached to the legs. Cables connected to the legs
would look bulky and potentially create an unwanted hazard to the performer and equipment. In
order to minimize the hazards, I sought out another unique wireless data transfer method, radio

signals.

8. JeeNode wireless Tx/Rx

JeeNode is a small wireless microcontroller board that communicates through a RFM12B
radio module at either 433, 868, or 915 MHz. The JeeNode Tx/Rx boards served as the wireless
solution to connecting the accelerometers to the body (one accelerometer is attached to each leg,
just below the knee), and freed the performer of attached cables during performance. The
JeeNode Tx (transmitter) collects information off the analog pins of the dual-axis accelerometer,
before sending the information over a specific radio frequency.’ The JeeNode Rx (receiver)
converts any received JeeNode Tx message into an 8-bit serial packet, which is then sent over a
universal serial bus (USB) into the host computer®. The information is collected by Max/MSP/
Jitter for data mapping (Chapter 12).

I discovered both the ADXL.322 Dual-Axis Accelerometer and the JeeNode Tx/Rx boards
after taking a University of Oregon workshop with Brown Ph.D. candidate in electronic music,
Kevin Patton. Because the hardware now belongs to the Intermedia Music Technology
department, I was able to borrow the equipment for use in Running Expressions.’

The main limitation to the JeeNode Tx/Rx are the fluctuations in the incoming data
streams. While I will discuss the data in further detail in Max/MSP/Jitter (Chapter 12), some of
the data fluctuations should be noted here. Leaving the device on and alone for two hours

connected to the computer resulted in forty seven spike occurrences in the incoming data stream

3 The JeeNodes used in Running Expressions implemented a 915MHz radio frequency.
¢ The information sent to the computer travels at a 38400 baud rate.

7 Included in the DVD is my own generic Max/MSP template patch for use with the ADXL.322 dual-axis
accelerometers and JeeNode Tx/Rx devices.

(Figure 8.1).3 Further investigations revealed discrepancies in data between running and walking.
The result were inconsistent triggers while running, which became apparent while mapping the

accelerometer triggers. One example was the choppiness of video playback.

stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 119.000000 stepRight: 87.000000 stepRight: 119.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 54.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 123.000000 stepRight: 118.000000 stepRight: 32.000000
stepRight: 117.000000 stepRight: 117.000000 stepRight: 52.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 121.000000 stepRight: 116.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 117.000000 stepRight: 190.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 54.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 119.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 120.000000 stepRight: 117.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 246.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 117.000000 stepRight: 62.000000 stepRight: 81.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 117.000000 stepRight: 102.000000 stepRight: 119.000000 stepRight: 118.000000
stepRight: 117.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 119.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 119.000000 stepRight: 114.000000 stepRight: 200.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 114.000000
stepRight: 118.000000 stepRight: 126.000000 stepRight: 118.000000 stepRight: 116.000000
stepRight: 118.000000 stepRight: 114.000000 stepRight: 119.000000 stepRight: 117.000000
stepRight: 118.000000 stepRight: 126.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 119.000000 stepRight: 116.000000 stepRight: 119.000000 stepRight: 118.000000
stepRight: 117.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 119.000000
stepRight: 126.000000 stepRight: 118.000000 stepRight: 119.000000 stepRight: 119.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 117.000000
stepRight: 118.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 119.000000
stepRight: 102.000000 stepRight: 115.000000 stepRight: 251.000000 stepRight: 118.000000
stepRight: 56.000000 stepRight: 118.000000 stepRight: 118.000000 stepRight: 119.000000
stepRight: 119.000000 stepRight: 55.000000 stepRight: 126.000000 stepRight: 119.000000

Figure 8.1. Accelerometer Spike Fluctuations. JeeNode data packets received inside Max/MSP while the
accelerometer was attached to the right leg. The accelerometer is in resting position as I am seated with
no quick movements. Data acquired on February 9, 2011.

8 The normal data range of the JeeNode packets was between 0-255 with normal resting values incoming between a
range of ten, usually 130-140, or 117-126. The forty-seven spikes in value were recorded for incoming values
exceeding 200, a value spike of 60+ in value. Fluctuations less than ten were not recorded. Figure 8.1.

10

PART III. SOFTWARE*®

9. Processing

Processing acts as the master program that controls the HRMI microprocessor. Processing
sends commands to the HRMI every 100ms to retrieve heart rate information stored in the
microprocessor buffer. These data packets are sent in the form of ASCII values, and are
comprised of a status byte followed by heart rate information and a carriage return. Once
Processing receives any data packet, the program displays the current heart rate value in a small
compiler window and simultaneously sends the heart rate value over to Max/MSP/Jitter. The
cross-software communication is achieved through an external java library called MaxLink. !0

During the compositional process, I discovered that my Processing sketch placed an
inordinate load on the CPU of the computer. Normally, Processing sent commands to the HRMI
upon every draw() function, a repetition occurring at the speed of the computer’s processor.
Because I didn’t need a continuous update of the heart rate information, I placed a speed limit on
the data transfer in order to maximize the computer’s performance. After imposing a 100ms
interval upon Processing’s information request, the CPU load on the computer went from

approximately 90% to 5% in computational load (Figures 9.1. and 9.2).

? Pictures of representative hardware icons may be found in the Appendix. Figure A.4.3.

19 MaxLink, http://jklabs.net/maxlink/ (accessed April 21, 2011).

http://jklabs.net/maxlink/
http://jklabs.net/maxlink/

Activity Monitor

@ @ | My Processes 3| (Qr
ss Inspect Sample Process Show
rocess Name A User % CPU Threads Real Mem Kind
i Activity Monitor jpbellona 1.2 2 26.3 MB Intel (64 bit) |
L,, Address Book jpbellona 0.0 3 27.0 MB Intel (64 bit)
AirPort Base Station Agent jpbellona 0.0 3 5.8 MB Intel (64 bit)
AppleSpell.service jpbellona 0.0 2 9.2 MB Intel (64 bit)
¢ Cyberduck jpbellona 0.1 24 159.4 MB Intel
Dock jpbellona 0.0 3 17.5 MB Intel (64 bit)
ﬁ Finder jpbellona 0.0 8 67.5 MB Intel (64 bit)
0 Firefox jpbellona 4.9 28 195.7 MB Intel
fontd jpbellona 0.0 3 4.9 MB Intel (64 bit)
fontworker jpbellona 0.0 3 3.2 MB Intel (64 bit)
| heartbeatTemplate3optimize jpbellona 93.3 27 38.2 MB Intel I
iTunesHelper jpbellona 0.0 3 2.9 MB Intel (64 bit)
launchd jpbellona 0.6 2 1.1 MB Intel (64 bit)
loginwindow jpbellona 0.0 2 8.2 MB Intel (64 bit)
© Maxmsp jpbellona 6.4 70 134.6 MB Intel
mdworker jpbellona 0.0 3 15.0 MB Intel (64 bit)
MIDIServer jpbellona 0.0 5 2.4 MB Intel (64 bit)
pboard jpbellona 0.0 1 856 KB Intel (64 bit)
% Preview jpbellona 0.0 2 43.3 MB Intel (64 bit)
Processing jpbellona 4.3 35 94.1 MB Intel
Quick Look Helper jpbellona 0.0 6 6.7 MB Intel (64 bit)

Figure 9.1. Processing optimization (before 100ms interval added)

0 O

Activity Monitor

| My Processes

ess Inspect Sample Process Show Filter

Process Name A | User % CPU Threads Real Mem Kind
EE Activity Monitor jpbellona 1.2 2 26.4 MB Intel (64 bi
| Address Book jpbellona 0.0 2 27.0 MB Intel (64 bi
AirPort Base Station Agent jpbellona 0.0 3 5.8 MB Intel (64 bi
AppleSpell.service jpbellona 0.0 2 9.2 MB Intel (64 bi

¢ Cyberduck jpbellona 0.1 24 159.4 MB Intel
Dock jpbellona 0.0 4 17.7 MB Intel (64 bi
& Finder jpbellona 0.0 16 77.6 MB Intel (64 bi

@ Firefox jpbellona 2.1 24 192.9 MB Intel
fontd jpbellona 0.0 4 5.0 MB Intel (64 bif

[heartbeatTemplate3optimize jpbellona 4.3 27 42.3 MB Intel
iTunesHelper jpbellona 0.0 3 2.9 MB Intel (64 bi
launchd jpbellona 0.2 2 1.1 MB Intel (64 bi
loginwindow jpbellona 0.0 2 8.2 MB Intel (64 bi

© Maxmsp jpbellona 7.9 70 134.6 MB Intel
mdworker jpbellona 0.0 3 13.7 MB Intel (64 bi
MIDIServer jpbellona 0.0 5 2.4 MB Intel (64 bi
pboard jpbellona 0.0 1 856 KB Intel (64 bi
A& Preview jpbellona 0.0 2 43.3 MB Intel (64 bi

Processing jpbellona 3.8 34 97.0 MB Intel
@) QuickTime Player jpbellona 0.0 13 55.7 MB Intel (64 bi

Figure 9.2. Processing optimization (after 100ms interval added)

11

12

heartbeatTemplate3optimize §

myPort.write("1");

myPort.write(CR);
'/ Wait for a response from the HRMI dewice
while (validData == @) {
| delay(100); // Delay 1@0ms between checks |
I

Figure 9.3. Additional Processing code, limits time between data requests

10. OSCulator

OScClulator is a software that connects many different devices and software together
utilizing the Open Sound Control communication protocol. Open Sound Control (OSC) is a
stable, 32 bit protocol used for interconnecting hardware controller devices to the computer, as
well as software on one or more computers.!! The protocol utilizes UDP/IP (User Datagram
Protocol/Internet Protocol) packets, which are user-defined packets of information sent to/from
computers and devices on the same local network. Because OSC offers reliable, programmable
messages served on a local network, I chose OSC the communication protocol between the
Wiimotes, Max/MSP, and Kyma. The OSCulator software displayed my individualized message
packets, which eased the compositional process. OSCulator also provided a stable location where
I could connect the Wiimotes to the computer and confirm data entry quickly and efficiently.

In Running Expressions, OSCulator serves three functions. First the software retrieves
Wiimote data and translates the information into OSC messages. Second, OSCulator sends the
translated Wiimote OSC messages to Max/MSP/Jitter. Third, OSCulator routes OSC data packets

received from Max/MSP across to Kyma.

1 Open Sound Control, http://opensoundcontrol.org/spec-1_0 (accessed February 03, 2011).

http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0

13

In all cases, all messages received from Max/MSP were routed to Kyma as continuous
controllers. Fifty-nine CC (continuous controller) connections were routed from Max/MSP to
Kyma. All Wiimote buttons and motions were sent to Max/MSP except one. Wiimote 1 button 2
was routed directly to Kyma because this button serves a single function, triggering WaitUntil
objects in the Kyma Timeline. The button enables the performer to trigger the beginning of the
next section of music, which frees the performer from adhering to a particular time schedule.

OScClulator also defined MIDI channels for messages sent to Kyma; however, the
Continuous Controller and MIDI channel information sent to Kyma use Symbolic Sound’s
MIDI-over-OSC protocol, which is why the OSC protocol icon is shown in Figure 10.1, and not

the MIDI protocol icon.!?

€3 Bluetooth

4\ 3
ar’'s
OSE
/X
o=

Figure 10.1. OSCulator Signal Flowchart

12 Synthtopia. “Kyma gets OpenSoundControl (OSC) Support.” http://www.synthtopia.com/content/2010/03/05/
kyma-gets-open-sound-control-osc-support/ (accessed April 19, 2011).

http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/

C Event Type Value ‘Chan. &
M0 /allMute/ Kyma CC L8 s ™
M fbeat/ Kyma CC 428 L1 .
M1 /boneAmplitude/ Kyma CC s 71 L2 .
M /boneAmplitude2/ Kyma CC £ 73 L2 .
BD /boneHarmony/ Kyma CC s 78 = 7 =
M /boneMelodyTrigger/ Kyma CC . 4 : 2 .
M /bonePan_Angle/ Kyma CC s 74 2 .
™[] /bonePan_Angle2/ Kyma CC L 75 22 s
M /bonePan_Radius/ Kyma CC L 76 L2 .
M /bonePan_Radius2/ Kyma CC s 77 ;2 -
M1 /breathAmplitude2/ Kyma CC : 80 L2 .
M /breathRamp/ Kyma CC : 109 O | :
W1 /ButteMovieAngle/ Kyma CC s 115 = 1l .
M schildSelect/ Kyma CC 4 11 - Attack | :
M1 JchildTrigger/ Kyma CC 4 12 - Bandwidth aNy 4
M1 /ClimaxBoost/ Kyma CC s 116 L1 .
M1 /CodaBoost/ Kyma CC 4120 ‘a4 .
M1 /CrashTrigger/ Kyma CC s 117 B | :
M JenvironRate/ Kyma CC ‘10 =l .
M1 senvironSelect/ Kyma CC 4 11 - Attack £ 3 :
M /ExpoBandwidth/ Kyma CC s 97 = il .
W[/ExpoSideValue/ Kyma CC ‘96 ‘1 .
@ JExposition_FadeOut/ Kyma CC ‘92 ‘1 .
8 [1 .. sitionVolLSequencer/ Kyma CC . 94 s 1 .
ED ...sitionVolRSeguencer/ Kyma CC ;93 = ul =
M1 /ExpositionVolumeL/ Kyma CC £ 90 I | .
M JExpositionVolumeR/ Kyma CC ‘91 Sl .
@ /ExpoTimeConstant/ Kyma CC 495 | .
M /feet_totalCount/ Kyma CC L 86 S il .
@ .. totalCount_asTrigger/ Kyma CC ; 87 v 1 ;
M1 /foot_BPM/ Kyma CC 85 ‘1 -
M /heartBoost/ Kyma CC s111 | .
M ¥ fheartrate/ - s _ - :
™ 0 Kyma CC 457 L1 .
™0 0» 0 Kyma CC 457 ‘4 :
M key/keyNumber/ Kyma CC s 47 - Gate s 1 .
M1 /key/keyVelocity/ Kyma CC s 3 s s
M1 /keyNote/ Kyma CC L2 ‘1 .
M /melodyAmp/ Kyma CC 479 L2 ‘o
M /muteFeetMaster/ Kyma CC s 12 - Bandwidth s 3 ~ 5]
M /muteHeart/ Kyma CC s 29 = il AlY

Figure 10.2. OSCulator, part 1. OSC messages received from Max/MSP/Jitter, routed to Kyma.

" kymaHRMTester_newversion3.oscd

Value

15

'55agH Event Type Chan.
M /melodyAmp/ Kyma CC $ 79 i 2 Y7
M1 /muteFeetMaster/ Kyma CC 4 12 - Bandwidth 43 :
M1 /muteHeart/ Kyma CC s 29 -l -
M1 /notel/ Kyma CC : 101 S | :
M1 /note2/ Kyma CC s 102 = 1l -
M1 /note3/ Kyma CC : 103 i1 :
M1 /noted/ Kyma CC s 104 = il -
M7 /noteS/ Kyma CC 4105 ‘1 :
M0 /notes/ Kyma CC ‘106 2 9l z
M0 /note7/ Kyma CC ‘107 | :
M7 /panningLine/ Kyma CC L6 + 3 =
M /pianoEvery/ Kyma CC ‘110 3 | =
M1 /pianoFinal/ Kyma CC 4112 = 4l z
M srates Kyma CC s 27 i1 :
M1 /rateAorta/ Kyma CC + 30 = il =
M1 /selectSound_feetStart/ - s . -
W1 JselectSound_leftFoot/ Kyma CC ‘81 > 1l z
M1 ..ound_leftFootTrigger/ Kyma CC L 82 ‘1 :
M1 /selectSound_rightFoot/ Kyma CC ;s 83 = 1l =
M1 ..nd_rightFootTrigger/ Kyma CC ;s 84 v 1 :
M1 jtimeindex/ Kyma CC s 70 = 7 =
M1 stimeindex2/ Kyma CC L 72 s 2 :
M jtptPreset/ Kyma CC 108 ‘1 g
™ 1 ¥ jwii/1/accel/pry OSC Routing + l-localhost:9000 .-
™ 0: pitch 0OSC Routing 4 1-localhost:9000 s -
™[] 1: roll 0SC Routing ‘¢ 1-localhost:9000 s -
™ 2. yaw OSC Routing + l-localhost:9000 T -
™ 3: accel OSC Routing + l-localhost:9000 T -
ED W jwii/1l/accel/xyz OSC Routing + l-localhost:9000 = —
™[] 0: x 0OSC Routing 4 1-localhost:9000 s -
SD l:y OSC Routing + l-localhost:9000 -
™ 2z 0OSC Routing ¢ 1-localhost:9000 s -
M0 jwii/1/button/1 0OSC Routing ¢ 1-localhost:9000 s -
M0 jwii/1/button/2 Kyma Ext ¢ WiiButtonA ‘1 :
M1 jwii/1/button/A OSC Routing + 1l-localhost:9000 s -
M1 jwii/1/button/B OSC Routing + 1l-localhost:9000 s -
M1 jwii/1/button/Down OSC Routing + 1l-localhost:9000 s -
M0 jwii/1/button/Home OSC Routing + l-localhost:9000 T -
SD Jwii/1/button/Left OSC Routing + l-localhost:9000 s - (-
BD Jwii/1/button/Minus OSC Routing + l-localhost:9000 s - A
M [swii/1/button/Plus OSC Routing + l-localhost:9000 s = 1Y

Figure 10.3. OSCulator, part 2. OSC messages received from Max/MSP/Jitter, routed to Kyma.
Wiimote messages received, routed to Max/MSP/Jitter.

" kymaHRMTester_newversion3.oscd

I Jwii/1/button/Left
8 1 jwii/1/button/Minus
M1 /wii/1/button/Plus
M] jwii/1/button/Right
8 O fwii/1/button/Up
8 A 4 fwii/1l/motion/angles
™ 0: pitch

8] 1:roll

8] 2. yaw

W 1 ¥ jwii/1/motion/velo
™ 0: pitch velocity
™ 1: roll velocity
™[] 2: yaw velocity

M [v swiif2/accel/pry

8 O 0: pitch

8 O 1 roll

E | 2! yaw

8 O 3: accel

M] v jwii/2/accel/xyz

8 | 0 x

8 | ly

8 D 2.z

M Jwii/2/button/1
M Jwii/2/button/2
M ywii/2/button/A
M1 jwii/2/button/B
W[/wii/2/button/Down
8] jwii/2/button/Home
M1 jwii/2/button/Left
W[Jwii/2/button/Minus
8 1 jwii/2/button/Plus
W[Jwii/2/button/Right
W[Jwii/2/button/Up
8 [w fwii/2/motion/angles
8] 0: pitch

8 O 1 roll

8 [l 2: yaw

™ 1 ¥ jwii/2/motion/velo
™[] 0: pitch velocity
™ 1: roll velocity
™M 2: yaw velocity

Event Type
OSC Routing

OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing
OSC Routing

SR R R N o o L R R o Ll L R R o o Ll o o o L o o O o A A L o O N A L R R R B R

Value
1-localhost:9000

1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000
1-localhost:9000

S R R R o o L o o R o o o L R N o e o o o o o o o o o o R A L o O o A A R R R B B

A
b |

Figure 10.4. OSCulator, part 3. Messages received from Wiimotes, routed to Max/MSP/Jitter.

16

11. PacaConnect

17

PacaConnect is an OSX "user agent" program for the Mac that provides an advanced

connectivity solution for Symbolic Sound's Paca(rana) device.!3 The PacaConnect allows MIDI

messages to be received and sent between Max and the Paca(rana) by serving as a virtual MIDI

patchbay. The software was inexpensive and took care of potential hardware problems as the

PacaConnect only requires one RS45 connector (no MIDI interface). While Figure 11.1 shows

the full connectivity of the software, Running Expressions only utilizes the virtual MIDI

patchbay via the App-to-App connection inside the Mac computer.

External Device 1 External Device 2

MIDI Keyboard, MIDI Keyboard,
Controller, or Sequencer Controller, or Sequencer

a
PacaConnect | oM
(OSX "user agent”)

PacaConnect
virtual MID!
PacaProxy patchbay
Server ¢

MiDI-over-OSC

App-to-App
S

Pacarana
0sC
Clients

MIDI port

EETET
yiompaN

Paca(rana) virtual

Figure 11.1. PacaConnect Signal Flowchart

Any USB MIDI device,
or MIDI device
connected through
USB MIDI Interface

MIDI
Application
(Logic, Live,

etc)

13 PacaConnect, http://www.delora.com/delora_products/pacaconnect/pacaconnect.html (accessed April 21, 2011).

http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html

18

12. Max/MSP/Jitter

Max/MSP/Jitter is a visual programming environment for music, audio, and media. I
chose to use Max/MSP/Jitter because of its flexibility in handling multiple tasks simultaneously,
its ability to communicate between devices and software, and its ability to manipulate numbers,
strings, and matrices. While many functions and protocols can be handled within the Max/MSP/
Jitter software, I used Max/MSP/Jitter for three distinct purposes. Max/MSP/Jitter collects and
modifies data received from the heart rate monitor, Nintendo Wiimotes, and accelerometers,
controls musical parameters inside the Kyma environment, and lastly controls the video

projections.

12.a. Data Hub

Max/MSP/Jitter collects data from the three musical controllers (heart rate monitor, two
Nintendo Wiimotes, and two dual-axis accelerometers). Because previous sections discuss these
three devices communication links as well as their associated software applications, I will focus

instead on the direct communication links to/from Max/MSP/Jitter.

12.a.1. Heart Rate Monitor from Processing

I used an external java library called MaxLink, which enables communication between
Max/MSP with Processing, to transmit the heart rate information to Max/MSP/Jitter. Max/MSP/
Jitter received heart rate information as integers using the external max object “mxj

jk.link” (Figure 12.a.1).14

14 For more information about MaxLink, please visit http://jklabs.net/maxlink/

http://jklabs.net/maxlink/
http://jklabs.net/maxlink/

19

. O 0 O ' ' ' [HeértRateMonito:

Heartrate Routing from Processing to OSCulator \t

From Processing
(60/heartbeat
counter hr-many)*1440) 1 hr-atdraw 1-once at draw

r;xj jk.link heartbeatTemplate3optimize 1 6

(5 0o JGo_Jbe) (o] GoJ
| —

if no hr (hr=0), mute

the heartbeat ;L once

S 107
if $i1 == 0. then $i1
T

(s fastRate] [s stopHRmovie] [s realRate)

Figure 12.a.1. MaxLink external object inside of Running Expressions Max/MSP/Jitter
patch.

12.a.ii. Nintendo Wiimotes via OSC messages from OSCulator

Stated before, Open Sound Control (OSC) is a stable, 32-bit protocol used for
interconnecting hardware controller devices to the computer, as well as software on one or more
computers. Max/MSP/Jitter collects Nintendo Wiimote information via OSC messages sent from
OSCulator. I used an external Max object “OSC-route” created at the Center for New Music and

Audio Technologies (CNMAT) to sort the OSC messages received from OSCulator (Figure 12.a.
2).1s

15 For more information about the CNMAT downloads, please visit http://cnmat.berkeley.edu/downloads

http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads

20

e NoO ‘o Wiimote_ToKYMA33_newEnd4b_comment (ut

p ExpositionSequ
p JeeNodeAccele
p HeartRateMonit

p ControlWindow

_select Paca(rana) _(notein |
udprecelve 9000 -
0SC-route il P MIDI p Vid

(midiout) select Paca(rana) -

OSC-route foutton faccel fir /motion
- - - - -

5Crouts 1Up IDown ILaft Rght /A T8 WiiMote Control

/Minus /Home /Plus /1 /2

< lons 10 ignir

Figure 12.a.2. OSC-route external object inside Running Expressions Max/MSP/lJitter
patch.

12.a.ii1. JeeNode and Accelerometers from Serial Bus

Max/MSP/Jitter collects accelerometer data directly via the serial ports located on the
computer. JeeNode Tx messages are sent as 8-bit serial packets at a 38400 baud rate over a
universal serial bus. Max/MSP/Jitter receives these packets as separate pin read-outs with values
between 0-255. The normal resting values of the incoming JeeNode packets were between a
range of ten, usually 130-140, or 117-126.

I used the leg’s motion as triggers, creating a bang on the upswing of each leg, as the
motion produced a predictable, although not completely reliable, pattern of numbers. I used the
‘past’ object in Max to trigger the bangs. Based upon tracking the data with both walking and
running motions, the peaks of data were more consistent with the upswing of the knee, not on the

down step of the foot, where I encountered inconsistent double peaks per footstep (Fig. 12.a.4.).

21

Even though I used a more consistent stream of numbers to trigger footsteps, the data continued
to prove problematic.

Throughout the project, the data coming from the two accelerometers/JeeNode wireless
microcontroller boards proved the most difficult to control. First, the physical location of the
accelerometers attached on the legs could slightly change between performances. The variability
of location was due less to the placement of the accelerometers on the legs than the constant
motion of the performance. I helped minimize the physical location variability of the

accelerometer with creating close-fit pouches for holding the JeeNodes in place.

4 r
o wfil

Figure 12.a.3. JeeNode Tx and Accelerometer Pouch

I also found slight differences in incoming data whenever I changed the 9V batteries
powering the JeeNode devices. The initial change of batteries processed more frequent ‘spikes’
in data. I define a spike as a sharp increase or decrease in number without any spontaneous
motion of the accelerometer. For example, at rest, the accelerometer outputs data generally
between 130-140, or 117-126. I encountered data spikes with values above 200 while the
accelerometer was in rest position (Fig. 12.a.4.). These value spikes occurred more frequently
with fresher batteries. As a reaction, I minimized these peaks by cutting out any incoming data
above 200.

Third, I discovered that after each battery change, the ‘past’ object threshold had to be

adjusted to stabilize the triggering function. It is possible that the physical shifts of the

22

accelerometer while placing the device inside the pouch could account for subtle differences in
threshold values changing. However, the increase in the frequency of ‘spikes’ suggested that the
variability of the device’s power also caused a shift in the incoming data streams.

Due to the physical variables inherent in using these devices, I was unsuccessful in
developing a stable platform with which to get consistent data streams. While I was successful in
processing simple triggers with simple motions, the physical act of running and therefore, the
increased tempo of trigger events, proved problematic to control. The instability effected the
sounds in my Feet Exposition and Development sections. The playback of the video, which was
directly linked to the motion of the legs developed an irregular or choppy playback. In addition, I
could not rely on the feet to provide a stable bpm tempo with which to lock the music to.
Therefore, I could not create a direct connection between sound modifications (like delay, echo,
or tempo mapping) and the physical motion of the legs, limiting the number of direct performer-

to-sound associations potentially perceived by the audience.

rightFoot

Running Walking

Figure 12.a.4. Data stream table of the right leg accelerometer. Maximum values show motion of the leg
downward, and the minimum values show motion of the leg upward.

23

12.b. Musical Parameter Controller

The second purpose of Max/MSP/Jitter was to control musical parameters inside the
Kyma environment. Max/MSP sent two types of control messages to Kyma, MIDI messages and
OSC messages. All MIDI messages sent to Kyma were sent via the PacaConnect software. All
other control messages specific to musical parameter controls (like panning, filter cut-off
frequency shifts, and file playback rates) were sent via OSC messages using the OSCulator
software.

The only external Max object not previously mentioned used in the creation of these
controls was the “randdist” object. The “randdist” object is a random number generator created at
CNMAT. I used this object for average foot distance displayed on the main video monitor as well
as video jitter interpolations occurring when the video is paused. The video jitter simulates
normal human eye scanning while in rest position. The perception of the video moving left to
right with some vertical jitter uses a normal distribution of random numbers.

All data collection functions and musical controls were placed inside of the
“Controller Kyma33 End4b.maxpat” Max 5 patcher included on the DVD. Figures A.1.1 — A.

1.1.19 iconically represent the Max 5 patcher used for the final Master’s recital performance.

12.c. Video Projection Controller

The third and final function of Max/MSP/Jitter was to control the video playback of
several different movie files across several videoplanes. For controlling multiple videoplanes
inside a 3D projection environment, I initially employed HC Gilje's Video Projection Tools.!® HC
Gilje's VP Tools offered a flexible and direct way for me to project multiple videoplanes on a
single, expandable screen. While his application was meant for generic use, I chose to modify his
patch and subpatchers because I was not readily familiar with gl.videoplanes and gl.render
objects insider Jitter. Having a pre-existing working template enabled me to get quick, working

results while learning how to work with video inside Jitter. In one sense, I was reverse

16 HC Gilje, Video Projection Tools, http://hcgilje.wordpress.com/resources/video-projection-tools/ (accessed
November 2, 2010).

http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/

24

engineering his patch in order to work with videoplanes, scraping away the unneeded particulars
for use in my Terminal Project. From a different viewpoint, I was learning how to build an
optimized video system for use with multiple software/hardware components.

The work spent cleaning up these patches was worth the knowledge uncovered for not
only learning video projection necessary for my Terminal Project, but also the work strengthened
other skills integral to creating a computer music-system, including interface design,
documentation, and system optimization. While I spent countless hours cleaning up HC Gilje's
patches before I was able to modify them, the result was clean templates. These clean templates
provided me with a strong starting point from which I created the video projection for Running
Expressions.'’

The cleanup documentation is shown with Figures 12.c.1 — 12.c.7. All other
documentation of Running Expressions video projection Max/MSP/Jitter patches are contained

in Figures A.2.1 — A.2.1.1, located in the Appendix.

Mo - o videoplane_module08-exp (presentation)
#2 (oo) cirdepng [= -
! bo. o] C X J o o
O arid 0.081633 1 reset cp | NN (N (NI

Figure 12.c.1. Videoplane cleanup documentation. HC Gilje’s patch in Presentation mode.

17 These templates are marked and included in the accompanying DVD.

25

— B e el Y LAl
- 1 folderupdate M
rfocus 075075 r identifier
sprintf symout %smask/!
P
ST] ibs
bgeolor 1.0. 0. 1. I ‘ﬁmﬂnm HD:/Users/jpbellona/DocumentsMUS
(2 (#2ed £ Vo35 - S1OVPT_4.165_oexisourcepatches_JONmask”

r colorOpFromUS,

r #2swaich

 satglobal

-
o) B

r swatchtrig

r#2red | r#2green | 1 #2blue

‘\"

$F1videoplane

5 1videoplane

rulkl) (ruikl) (ruli
gate gate
pvar uyt | (var ux2

prepend bgcolor

gate

pvar uscale_y

patir scale_y

Sxpr ($1141.25)°40.

3k rotatexyz 0.0. 0.

pvar umask

pattr mask

rul_ia

rul_ka

pvarusource || | oo

pattr source

pattr

s

&

T maskioicer

f1+2)°25.

f/

masks

maghaource

prepend prefix

circie.png

&topopulate T

Figure 12.c.2. Videoplane cleanup documentation. HC Gilje’s patch in Editing mode.

8006 B , module08
_)
l Swatch for videoplane
jitglslab mofo @file cc.alphagiue jxs @lum2apha 1 MLLL
 colorOpFromUSB2 inspatcher |
(am) s [N —
print draw —=
w o (7zouc)
sel #2
.
swatchgio
Sepr (S1+1.25740. axpr ($11+2)°25 a';“":em of % l_[rg R sasl
- - eoplane
pak set 0 pak set 0 | T
- - bgeolor 0.75 0.75
o po] bgeolor 1.0.0.1. 0751,
= I
paksel10.20.
. o))
o
= (r swatchtrig)
o= pak 0. 0.0. -
'y
por t0b1
gato
‘saturation
prepend set prepend bgcolor ol
— R T R T ruia rui rulla rua rul rulla
gate sie sie gate gate gate
T e T var uscale_y prarueoLy || pvar wror_z
faty2 fatry3 potrya pat scalo_y _ powroy | pawroiz
pak 1 1 v pak 10val 1. 1. 0. 1. pak positon 0. 0. 0. = pak rotatexyz 0. 0. 0.
T T T
ELrepem e 2D videoplane position (xy) 3D position ()
T
ibl
T]
r 1

Figure 12.c.3. Videoplane cleanup documentation. Cleaned-up patch in Editing mode.

26

ad

r folderupdate

sprintf symout %s/videa!

S RCHD:Usersihcihks/alphdl

T
gate i1
.movie 32
= #1
sel 1 .
stproe | =
tb
I r mQvSele
-
pak looppoints 0 0
rul_ks
pvar uvideo tb
pattr video
s #1_com
rul_ki rui_kil rul_ki rul_ka
vaaruua pvar usn pvar uout pvar ulocop
pattr rate. pattr in pattr out pattr loop

—

thispatcher
-
r movdim
#1dim
intosh
Q:Mpbelmlbnww

Figure 12.¢.5. Movie source cleanup documentation. HC Gilje’s patch in Editing mode.

27

|

[
sprintf symout %sividea/

External N p VideoControl
!

r value_time

[value_total_time |r value_timescale |r value_framecount [r value_fps

oW soooooos [l o T 1]
e e

ieRunning J [value movieRunning

if $i1 <= 0 then 6 else $i1
if $i1 ==7 then 1 else $i1
)
{

loadmess 0

=
s movieRunningSelect

Movie Control

look left to right with some vertical jitter
(normal distribution over 10-20 pixel range)

erpolationX | p d erpolationY |

=

() gettrame fps and =
£ imi o
del 50

7

Figure 12.c.6. Movie source cleanup documentation. Cleaned-up running movie patch in Editing mode.

28

®NO moviesource_distance (unlocked)

‘n i LcD display to be used with Video Projection Tools as a moviesource.
T

thispatcher r totalMeters : ; :
- Takes distance generated by feet accelerometers, °

m -and displays on a videoplane as a jit.Icd

r motor) |><| 9:‘"’_‘_“"’"2

gate

O

I font information,
:bg color and text :
: placement inside :
= ':‘Erintf write %ld meters - matrix
H witeds nt "Andale Mono® 25, textface bold, brgb 0 0 0, color 0, clear, moveto 10 28
meters T
- - Andale Mono - joadmess 1
ist $1
| | bold =
9-‘_#1 I displays QT # so source may thYmbOIL f =
be selected by various -
vidaoplmasw Y (5 lcd_distance) pak font geneva 14 Eepend extisce

(I + I IR |

Figure 12.c.7. Movie source cleanup documentation. Cleaned-up LCD movie patch in Editing mode.

13. Kyma

Kyma is a graphical programming environment for live, interactive sound generation and
manipulation. I used Kyma to not only help with composing sound material found throughout the
work, but I used the system for the real-time control of audio for an eight-channel performance.
Kyma also sent Max/MSP/Jitter fourteen distinct MIDI messages that were used to trigger
various video controls.

I chose to use the Kyma Timeline for the performance. Inside the Timeline, I delineate
sections using WaitUntil Sound objects, as I am able to control when the next section will begin,
freeing the performer from adhering to a particular time schedule. The Timeline also facilitated
the triggering of the fourteen MIDI notes (Figure 13.1). While there isn’t enough space to

adequately describe the various sounds, Figures 13.2 — 13.20 briefly showcase the sound material

created inside Kyma.

29

- £ ©f< O [Soonesas] [chiarn] i
we ciZze@woll | | | | | <+ Trk 8. MIDInote triggers
o -1 £ @FF«
STEEYC) IO e ——
™ - £ @Ff H _ £
BPM : - ’ “‘T
OECEECTS | SEEEnEEEEE

Figure 13.1. Kyma TL, with WaitUntil Sound track and MIDI note track highlighted. The timeline
duration does not matter because each section’s duration is determined by triggering WaitUntil Sounds.

dummy WaitUntil

<« C
Input

dummy

R

IWiiButtonA

Figure 13.2. WaitUntil Sound Object. Wiimote 1 button 2
triggers each section, although mapped as ! WiiButtonA
inside Kyma.

30

L

MIDIOutput_01 output pitch 01
<
Text
1. qt# - on/off - movl on/ mov2 off
qt multiplier - movl = 167.6, mov2 = 158 K FlyByOnly

movie select -movl= 2, mov2 =0
jitter on/off - mov1l on/ mov2 off
fade line - i.e. xfade - none

new section comment - EXPOSITION

Figure 13.3. MIDI Output Pitch, serves as video command
trigger, which is mapped inside Max/MSP/Jitter.

SumoOfSines EQFilter Main HR level

9

SumOfSines LowPassFilter Bass HR level

Figure 13.4. Heartbeat Sound, first electronic sound heard in
RunningExpressions.

31

Controllel

SoundTodG!
Controller

10 LFO_modulat
eDutyCycle

Stereoln HeartPulsations_no
HRMtoBPM

Outputs Sequencer_ch125678
undToGlobal
\ \ \ Controller
Chopper [QFiter Compressor
. Noise (white) \
AR heantbeat Compres: derLevel EQFiher <

<«

Text

THIS IS THE HEART EXPOSITION FILE =

EFlyByOnly [JshowControllerMappii

Main parameters to control:
Bandwidth: keep this low

Rolloff effects density of chord.
Side: effect chord

Small Intervals: Randomness |
Tone goal is clarity - 0.0 is muddy
TimeConstant changes duration of sound, so pulses are gone above 0.5 Input
Threshold: at 0.5 is good, at 0.0 sound will naturally fade out. good way to end ‘“
this sound. vt
Chopper Level is inverse to Sequencer level. Outputs
Heart rate controls rhythm of overall sound, and playback rate of heartbeat.

Heart rate to control rhyhtm of the sequencer. Using presets for the sequencer.
Heart low frequency continues in speakers 5&6 after all has faded. Footsteps and
breathing patch need to enter.

Figure 13.5. Heartbeat Exposition Main Sound, Vocoder with Delays

32

)" RERV R
o ’ fampleBank 7 - Sequencer EQFiler Compressor EQFier
Gl - smooth with rapidBPM

StereoMix2 EUverb LITE
delayed Sequencer \ \
with X }ﬁ ® ‘ —od
HighShehving Lowshehing
Stereoln
e e Outputs _ch123478
SoundToGlobal
Controller
Notel £4

<« C
Text

EIFlyByOnly [OshowControllerMappi

Sequencer is separate in order to fade in first, brings
cohesion to the piece as the ending is only this
sequencer

Figure 13.6. Heartbeat Exposition Sequencer

hﬁﬂ.*ﬂiﬁb*b*‘

Function heartbeat LowPassFilter HBlow

Generator

Figure 13.7. Heartbeat Low Rumble

33

Road Atmosphere Level StereoToEight Road Atmosphere

Figure 13.8. Road Environment Ambient Sound

EQFilter Feet Feet EQFilter
Compressor

Right 4

Figure 13.9. Selectable Foot Sounds. Accelerometers serve as sound triggers.

34

triggerEvery’
Setup rightfoot
triggerEvery
2nd /A
ofl ahz2_formant FootWaltz FeetMasterce Annotation
i sAndOthers FormatAll
By - | \ low_high
Bass thirds Downbeat | Piches Bt .
I o EuverbRight Sprinkler r«n? : ool
- one] ’ position
K " Dog minusion X (inal2_fixedPresets
high 2nds EveryTwo
| nd CarPass JectASound Environment
- Environment Sounds
right fifths EveryFifth I
Bird
triggerEve:
Arh
<l
Text
Each accelerometer trigger on your leg triggers an actual foot sound, R FlyByonly [OshowControllerM;

and adds one to the Counter Value.

If Value == 2, play a spectrum analysis that is pitched a sixth above.
= 3, play a spectrum that serves as a bass note.

If Value == 4, play a spectrum that is pitched a fifth above.l

If Value

Feet Exposition - MIDI channel 3
feet Master - cc12

Input

FeetMasterccl
2

Figure 13.10. Feet Exposition Waltz

Right Channel MultichannelPan
Only

.—O—!ﬂ

Children Multichannel
Spatialization

Left Channel MultichannelPan
Only

Figure 13.11. Selectable Children Sounds. Eleven sounds triggered and panned
by Wiimote 2.

35

cloud3b EQFiher

Muhichannel >
Pan Low Wil

'v’ cloud3b LowPassFilter I EQFiler LevelBone 08

dloud3 EQFilter LevelBone 08 Multichannel

Pan Low Wii2

S
Polyphonic Pitch Array pianoMonoTo

GenericSource \ wo Sets only Piano Mulhtichannel
Mono Disk .

N :

Eugenio

Mixer EQFiler MonoTo
GenericSource

L Multichannel
Mono Disk) P

plicateOICe79 vin
dy + clarinet + piano

pitchValue
Level piano E

SampleClouds - 2 bones vin +
cirnt +piano melody - new sets2

<«

Text

cloud1 - heartbeat morphs into the aortic regurtitation o

cloud2 - instead of horn melody, use a car horn? or ambient noise from outdoors, so EFlyByonly [OshowcCon

that the sound is played once, but picked up as a motif and granulated.

In Timeline, stack the clouds up..... Trombone Melody, Aortic Reguritations = first
then after Bone dies away, Breaths comes up and in. eventually morph into
something else

cc74 lone Sound with lows panned the same. (from 0-1) - pans around the front of the
room

cc75 one Sound with lows panned the same. (from 0- -1) - pans around the back of
the room.

Select a Sound - different bank of sample clouds - that play, so I'm not stuck with only
Trombones. to help tie the music in with the outside world. (music = your brain, your
emotions)

It's about timing.

Figure 13.12. Development Section for Trombones, Piano, and Strings

Aorta

Figure 13.13. Aorta Sound Transition

Multichannel
Mixer

36

I:‘"=o=tb=o=4

sample w/soft bird sequencer DerangeSamp
attack Bits189

Mixer Compressor BPM Delay
Jon

delayed

delayed

Heartbeat delayed

Counter

i
SumOfSines EQFilter Main HR level

immediatePostx
1_mix

B~ “‘l‘ E : :-

SumOfSines LowPassFilter Bass HR |,
Left Foot

pitchValue Feet EQFilter
LOwW

51 3
- L=
nn6S mixer Level Polyphonic Pitch Array PianoLowOnly_Breath
- Two Sets only Piano TriggersEvery LowPassFilter

MultichannelPan_to

jacelnTimelineControl
GenEvTriggers

Piano

Figure 13.14. Development Section Climax, part 1

i)

SumOfSines LowPassFilter Bass HR Iq

pitchValue
Low

nn6S mixer Level Polyphonic Pitch Array PianoLowOnly_Breath

MultichannelPan_to
acelnTimelineControl

GenEvTriggers
Pnangg - Two Sets only Piano TriggersEvery
AorticReguritations
525
[t Heartbeat
Counter2
tptl
Plano Dlow ? PrestTpt_via
Py 8 Maxcc108
Tpts_Presets
tpt2 MultichannelPan Prefixer
Tpt2
Brass Interpolate
Y Presets 1-9
w_{&.ﬂ Forest ForestEnviron
tpt3 MultichannelPan Prefixer ul::‘(i::?nel
Tpt3
8
Epn
bonel MultichannelPan Prefixer
Bonel
8
a0 BN e A mi me
bone2 LowPassFilter Compressor dB EQFilter Ls 08 i al Prefixer
Low Bone2

Figure 13.15. Development Section Climax, part 2

37

CrashSelect

Crash 06 nnéS mixer Polyphonic Pitch Array Crash_polyx3
- Two Sets only Piano

Crash 04

Figure 13.16. Crashing Forests Sounds, Randomly Selected

Final Piano Note Final piano chord

Final Piano Note

Figure 13.17. Final Piano Chord. Both Wiimotes’ A
buttons required to trigger sound.

38

WindMulti_across

N LtoR

ht Channel Only RightMulti

] Li

Left Channel Only MonoToMultichannel

AmplitudeFollower AmplitudeFollower

Figure 13.18. Wind Environment Sound. Amplitude increases in wind sound cause sound to pan from
Left to Right.

TwoFormant
Element

Note2 D4

Y —— el

ampleBank? - Sequencer EQFilter Compressor EQFilter EUverb LITE lite sequencer

Note6 A2

Figure 13.19. Exposition Sequencer Revisited

39

Final Heart

Vocoder2b

Noise (white)

L

AR heartbeat Compressor

@ A

EQFilter Compressor
StereoPingPong
Delay668

twoDelays

del2

Figure 13.20. Exposition Heartbeat Vocoder Revisited

40

PART IV. COMPOSITION AND PERFORMANCE STRUCTURE

While Running Expressions is not traditionally notated, the composition becomes more
solidified with every performance. I am developing towards a more codified version through
performance because each performance helps to provide immediate feedback about the
directions for the musical narrative. I am still working towards creating an objective performance
notation so that a different player could perform this work.

My compositional methods for Running Expressions can be broken down into three parts.
First, I acquired sound recordings based upon my ideas, and I expounded upon these sounds
inside of Kyma. Second, I drew an annotated structural sketch of how I envisioned the music
flowing, with my notes describing the sounds, the parametric controls, and the programming
implementations. Third, I worked with my sounds and sketches to develop a working version,
complete with the various software components, alternative hardware controllers, and sound

controls mapped out. Tweaks and changes of all sections occurred throughout the compositional

Process.

e no i ions_final.ktl

[>][50] [rea]pma][«a[pp] [w][+o][L][" Timecode ~|[--][30fps ~|[1/4frame w|[Freegrid || Timeedit || Colors v|

[TAutomation ~][_Audio] 10 I I] 6

l—IE“—I T

[Free running V‘ 00:00:00:00 |00:00:00.00 |00:00:40.DD |00:01:20.DD |00.02100.00 |00:02:40.DD |00:03:20.0D |DD:04100.00 |DD:04:4

k1 (- £ @B O | [HiPEns125678 | [Road Atmosphere | [Master_alle | | Windmit_crsstr | =
5 N

e 4O O]] I 1 [I (I 1 1 [

w1 £ © < ©| i e

ISP O) I I

s - 4 @< O

NGV T

w7 - £ @« O| [Enconmas

ke 14 OFE= O] | [| | \ [|

Tko] %(D < H| Heart Feet Development Development Recapitulation/Coda

o 04 OFf O Exposition Exposition Trombones Climax e v

- 4 @Ff« E [Final Heart Vocoder2b | ||

e >)b vl W
Master Controls 4 t
BPM -
[l conear <[5o | I]] 5 s e S s S 5

Figure 13.21. Kyma TL, with Sections Labeled

41

14. Section I: Exposition

Because recent technologies lack performance conventions, the music can be, at times,
difficult to access. Yet, the lack of conventions enables new ways to showcase a performance and
gives freedom to mold the technology to the performance. Perceiving electronic performances in
this way, using alternative hardware controllers necessitates an exposition of the device inside
the composition. The device exposition helps establish a musical vocabulary with which the
audience may gain access to the music. The first section of Running Expressions serves as an

exposition of the various hardware devices used in the composition.

14.a. Heart Exposition

I chose to initially emphasize the heart rate monitor and its control over the playback and
tempo of the music. The heart rate monitor allowed me to directly connect the body to the music,
and I saw this as paramount to the introduction of Running Expressions. If the heartbeat equals 0,
the music will not play or will fade away if present. First, the heartbeat rate controls the playback
rate of a heartbeat audio analysis file, using the SumOfSines object in Kyma (Figure 13.4). The
heart rate then is mapped to control the tempo of delays and sequencer material throughout the
first section. The Wiimote acts as a music conductor, signaling the changes of the chords of the
music, and facilitating timbre changes in the main rhythm through shifting EQ filter cut-off

frequencies.

14.b. Feet Exposition

After introducing the heart rate monitor and the Nintendo Wiimotes, I focus attention on
the accelerometers located on the performer’s legs. There is an exposition of real environment
sounds (ambient and footsteps), and the audience hears and sees that the audio and the video
playback are directly tied to the accelerometers. After a brief introduction, the environmental
sounds fade and a foot waltz begins. Because of the instability of accelerometer triggers, the
subsequent sounds irregularly accent the other sounds in this section. The video immediately
supplements the narrative by revealing a school playground and foreshadows later movements by

showing Spencer’s Butte in the background.

42

15. Section II: Development

15.a. Running on Dillard (trombones, strings, piano)

With the exposition of all three devices inside the composition, I move toward developing
the music and the musical journey. Compositionally, I shift my material to augment the physical
changes of a distance run. Climbing, internal dialogue, and moving from the presence of
civilization can all occur within a distance run, and I wanted to have this shift also coincide with
the intermedia elements. First, I shift the video away from the suburban setting of Eugene to the
wooded views of a country road. Musically, I created a darker tone with the granulation of
recorded trombone material, which helped the emphasis shift from external elements of ambient
sounds to internal developments taken place inside the runner’s mind.

This particular section is improvised by the performer. While there are eight static chords
the strings may play and a small, randomized pitch set of piano notes, the performer is free to
play this section how he/she wishes. The chord changes and the overall structure of the section I
performed had become solidified during rehearsals, and I instead used piano note timings of
randomly selected pitches to inform the phrasings of my improvised performance.

Because the Wiimote’s roll effected the time index of the trombones, I had some control
over the pitch material inside the granulations. I included a performance gesture that visibly cued
a trombone pitch change, and the realized note from this gesture served as the section’s harmonic
dominant. Because of the continual shifts in granulation of the audio, the perception of a strong
dominant became more solidifying than any chordal structure for the section. The trombone
gesture and harmonic dominant enabled a closing section through alternating between the V

(trombone gesture) and I (strings).

15.b. Running on Spencer’s Butte (Climax)
In the final development section, I attempted to completely link the run to the music. The
builds in tempo, instrumentation, amplitude, and rhythm of the music parallel the physical and

virtual increase in running (video portrayal of running Spencer’s Butte). Not only does the music

43

serve as a literal translation to the run, but the figurative suggestions of the psychological

impacts on the mind while running can also be found inside the music.

16. Section III: Recapitulation/Coda

Like in most runs, there is a return to home. Musically, I wanted to recapitulate the first
theme in its entirety, much like a sonata form, but I instead chose to lightly reintroduce the
sequencer and sounds found at the beginning of the work. The reuse of exposition materials
serve not just the function of a musical return, but also suggest a physical return to home, as
shown by the video’s return to the suburban streets.

In addition, the reuse of materials suggest a changed emotional state, for in running, after
accomplishing a goal, there is a level of joy achieved. The video manifests that joy through a
switch from 1st person perspective to 3rd person perspective. The internal journey of the
individual runner is an objectively shared journey by all those who run. The section’s materials,
the reuse of music found in the exposition, and the altered vantage point of the video function
also as a coda, offering an additional insight to the musical journey and placing the listener inside

a different space from where he/she began.

44

APPENDIX

A.l. Controller Kyma33 End4b.maxpat Figure Documentation

Jon |§ ExpositionSequencer
[0 JeeNodeAccelerometers |

[p HeartRateMonitorOSCSends)

[p ControlWindow | Master Contrals

select Paca(rana) [notein 1
MIDI i; VideoControIi
select Paca(rana)
OSC-oute uton acost fe moton

‘Osc-muwIUpIDwnlLeﬂlRlynlA.‘B ‘Osc-muteanIDmmILeﬂlRynlAla
/Minus /Home /Plus /1 /2 7 7 Minus /Home /Plus /1 /2 7 7

Figure A.1.1. Controller Kyma33 End4b.maxpat Main Patch Window

0. Turn on UltraLite and Pacarana (cables attached) reset
- Kyma should have been opened (reset Memory) checklist
1. Max Wiimote is open

2. OSCulator open O
3. set up Wiis with OSCulator, check in Max

4. Accelerometers - select Serial, test, turn off reader

5. open Processing, run sketch

- check Heartrate in Max

6. Paca Connect in System Prefs

- MIDI Max connections - select Kyma/Paca

- double check OSCulator assignments

7. Max VPT video setup

- load "runTest.json" file

- load Media folder in dropfolder object

- load preset #23

- start Qmetro

8. Window placements (video screen on opposite

side, Max control window, Kyma DSP status window)

9. CtrlWindow - Video Test Reset, turn off feet count

10. open Kyma Timeline

- start Kyma Timeline

11. test obj. 0:02 in TL - WiiMote1 A or CtriWindow

- test MIDI with WiiMote1 B or CtrlWindow

Figure A.1.2. Performance Setup Order Patch Window

46

®NO [Legend]
Sends/Receives Panels
rcmdl) Triggers from Kyma TL Selection and General Use Panels
Values from WiiMote buttons or controls
Resets

g
o)
£
2
wu

Master controls Wiimote 2/Feet Data Controls
Sequencer controls

rportnum | OSC routes Master Controls and Labels
Tempo controls
Tester controls D RS

rQTonofft | Video controls ,
— Interpolation Panels

Patchers
Calculation Panels
D Master/Major Functions
p Selection OSCulator sends Panels
(—

Specific Tasks (tempo, panning)

©

Video

©

Figure A.1.3. Color Legend for Master Controller Max Patch

47

A.l.a. Exposition Sequencer

Matrix grid controls the playback of a 16 step sequencer inside
of Kyma. Using presets of various grids for the performance

|p switches)

(r presetHorz Jfr presetctl)r cmd 11)fr cmd21) trigger 11 sets up
final sequencer, Start/Stop
Sl Metronome Tempo Controls
Wii A2 toggles
Proset Numbor the HeartRate controls the
’ O esetNum Tempo for this section
:::::::. riﬂeen presets used BPM 4 1 20
for exposition. T commands that reset
| = tempo control
lr cmd21 Ir cmd1 Ir cmd2 Ir one2 '
0 bars r
0 |beats O Reset
resets bars and beats
i immediately
prepend set
seq uencer tbs setthe message then bang it
Contl'ols "= reading columns every beat,
controls the sequencer in Kyma
unpack 0000000

e B

127.0.01 127.0.01 127.0.01 127.0.01 127.0.01 127.0.01 127.0.01
8000 8000 8000 8000 8000 8000 8000

Figure A.1.a.1. Exposition Sequencer Patch Window. The ‘matrixctr]l’ object controls the on/off messages
of fixed notes inside the sequencer. The sequencer was built inside Kyma.

Matrix grid controls the playback of a 16 step
sequencer inside of Kyma. Using presets of
various grids for the performance

Sequencer Controls

et @
@

rleft1] rsync2) [[rreset]

m

preset grid change output
‘getcolumn’ sent to the matrix grid

Figure A.1.a.2. Sequencer Control Patcher

Wiimote 1 moves through 16 presets

input Wi button

lue presetH | value presetH | loacmess 1 2

if $i1 <= 0 then 16 else $i1

if $i1 == 17 then 1 else $i1

output grid preset number

>

Figure A.1.a.3. Wiimote 1 Controls Presets Patcher

48

Tempo Control by HeartRate Heartrate controls the bpm of the sequencer

input toggle for HR control input bpm

(s bpm2
p taptempo

Tap Tempo setspeedin mS
L [T ms
tap tempo control

((oom)

3 output bpm

Figure A.1.a.4. Sequencer Tempo Control Patcher

toggled by tap eonlrolledbyuserbang
tempo and TEMPO INTO BPM TAP TEMPO
bl test tap control O CONTROL
- start/stop the transport L b
transport yourransporiname L
= = po__|
metro 4n @quantize 4n -
(@autostart 1 @autostarttime 0. sel 1
set tempo in bpm r T
rbpm Jir bpm2) () report current values g
B (rese) -
tempo$1 | if not working, hit reset #""‘“d @) () between two values
rbpm2is user fransport yourtransportname i
generated input T — —

receives user ms input timer

=
T -
2450. loadmess 120

o
send duration of Time 'now’ in ms [) 0.] [) 120.] Time 'now’ in bpm
quarter note - L
IO each beat oadmess 120 expr 60.* 1000./$f1 expr (60/$f1)*1000 Ir sync I
(s Sync2]fs dura l[r dura) convert ms to bpm [> 120.] [> 500] convert bpm to ms
reportsbars 10 | [0] reports beats L= @mdmsmmmm
bpm out every 2nd tap
s beats]

Figure A.1.a.5. Tap Tempo Sequencer Control Patcher

49

50

A.1.b. JeeNode Accelerometers

eno [JeeNodeAccelerometers] (presentation)

JeeNode to Max counter crmassechode code foot accelerometers main control panel

courtesy of Kevin Patton

SERIAL DATA INPUT CONTROL

Bluetooth-PDA-Sync | & . Bluetooth-PDA-Sync | &

. . . . e
o o2

CHANNEL DATA

Right Foot

p taptempo

[p sendsToKYMA |

stepCount total meters

120 500 . reset won't trigger the sound in KYMA
. . (1301 | section Meters, use one per video

ms

overall Distance, use for tallying

resets step Counter but not
0 . movie meters per section

section1 meters

resets step Counter but not
O overall Distance, use for tallying
- movie meters per section

section2 meters

A8 S . 0 04 868 _

Figure A.1.b.1. JeeNode Patch Window, in Presentation mode

rsenal_config_mess

p formttinghMenu

. Bluetooth-PDA-S...| &
(mevo 1 p porthesage

serial a 38400

Serial Port Message Format
input serial port as string

route port

15 clear

-
2l ter 1
-

prepend append

output with "append"

Figure A.1.b.3. Serial Port Formatting Menu Patcher

51

52

Change Serial object argument based upon
umenu selection

input serial port number

sel012345

T T 1]
il s

output format "port alpha"

Figure A.1.b.4. Serial Port Formatting Message Patcher

|

r

resetCounter . m

Figure A.1.b.5. Serial Channel Data Display Module

Takes Data of Left Foot, Generates a count based
upon Threshold, and outputs an Overall Step Count

input
threshold

&5,
255.255. 0.
"' $f1 <= 200. ’ set$1
then $f1

past 120

_counter 0 1 10000 |

output counter number

] : -

Figure A.1.b.6. Accelerometer Threshold Counter Patcher

Takes Steps of Left Foot, Generates an average Step
Length, and outputs an Overall Distance in Meters

1 input stepCounter

if $i1 > 0. then $i1

randdist uniform 0.85 1.15

section1 meters section2 meters

Figure A.1.b.8. Master Foot Distance Display Module 1

54

M NO [sectionDist]

Takes Step Distance of Both Feet,
generate an Overall Distance in Meters

n input Left & Right foot distance
1

f $f1 > 0. then Sf1 only takes value
——— greaterthan 0
= resatCounter L b
accurate reset
r
resetSectio
nCounter2
9
1bf
2
variable

n output total distance (in meters)

BAaLEED O EO

Figure A.1.b.9. Master Feet Distance Calculator per
Section Patcher, video control

rcounterLeft | rcounterRight | (rdistLeft | rdistRight

MAIN CONTROLS

p totalCount p totalDest
T T

0. 0.

s totalCount s totalMeters

stepCount total meters

rcounterLeft | r counterRight

p taptempo BPM control
T T

0. 0.

s bpmFeet s msFeet

bpm ms

p sendsToKYMA

Figure A.1.b.10. Master Accelerometer Control and Routing
Module 2

55

rtestbopm | @l input anything
@ TAP TEMPO CONTROL

takes time in ms

0O) () between two values
L It
receives user ms input timer
T
0. lcacmess 120

Time 'now’in ms _ 60000. | Time 'nowin bpm
I§m1m expr 60.* 1000511 | | expr (60/8f1)1000

convert ms to bpm [60000.] [1.]convert bpm to ms
r resetCounter
output bpm output ms data
every 2nd tap each beat

Figure A.1.b.11. Feet Accelerometer Tempo Control Patcher

56

57

Takes Step Count of Both Feet,
generate an Overall Step Count

() input Left & Right step Count

value totalCounter

il output total step count

Figure A.1.b.12. Master Feet Counter
Calculator Patcher, controls video

Takes Step Distance of Both Feet,
generate an Overall Distance in Meters

i input Left & Right foot distance

Figure A.1.b.13. Master Feet Distance
Calculator Patcher, lcd display

58

Select-A-Sound Control Foot Accelerometers controls sent to Kyma via OSCulator

() o || Gtmzed oo [ghtroot] |« countrRight

\ﬁ_;ﬂﬂﬂ_,_]
b2

axy

del 100
T { .
counter 001 1 counter 001

=~ 4T 1 T - Q ’ =

e | | |

- S S L
‘udpsend 127.0.0.1 8000 KYMA cc82 ‘udpsend 127.0.0.1 8000 KYMA cc8 ‘udpsend 127.0.0.1 8000 KYMA cc84 udpsend 127.0.0.1 8000 KYMA

Trigger/ $1 jhtFoot/ $1

a

Figure A.1.b.14. Accelerometer Sends to Kyma Patcher part 1. When triggering sounds inside Kyma,
Max/MSP must reset non-zero values back to zero in order to re-trigger a Kyma Sound object.

| | |
‘udpsend 127.0.0.1 8000 KYMA cc85 ‘udpsend 127.0.0.1 8000 KYMAcc86 udpsend 127.0.0.1 8000

Figure A.1.b.15. Accelerometer Sends to Kyma Patcher part 2

Reset Foot gate Feet test (w/o) gadgets

resets step
Counter and p startfeetCounter
T

Distance

| reset won't counting on/off
0 tngger the

sound in KYMA “o® 4 gt ;
mero 30

random 10
r feetTester
Master
Master Tagt s feetTester

Test

p masterTester section Meters,
use one per

video

Figure A.1.b.16. Master Accelerometer Control Module 3

® M O [startfeetCounter]

Foot Counter Gate

Trigger the Start of the Foot Counter.
Absolute, only done once per performance,
but need a way to stop if need be.

-

"s" e
press "c” then

key key "s" to trigger
El EE

sel 115 sel99

T T T T

1 0 1 0

L_J L_J

pak 00

==

unpack

0
expr $i1 + $i2

@ looking fora 2

if $i1 == 2 then bang else out2 $i1

T bangs out ONLY if's' is followed
by a'c’. To retrigger, must hit an

| ‘c' followed by a 's".

|

o output bang

A8 L2 E .0 .00 80

Figure A.1.b.17. Master Feet Counter
Control Patcher

Master Test Patch

n input bang or toggle

each bang toggles
between left and
right foot. sends
values past the
threshold

Figure A.1.b.18. Master Feet Counter
Test Patcher

60

61

A.1.c. Heart Rate Monitor

Heartbeat received from Processing, modified to control audio and
video playback speeds, then sent to Kyma via OSCulator

From Processing Heart rate test (w/o) hrm || Heartbeat Movie Playback

(60/eartbeat

Emntsr hr-many)*1440) 1 hr-atdraw 1-once at draw hr

mxj jk.link heartbeatTen:FIateaopumize 16

[-l-0] [-r0 ¥] ﬁ @ h - etro 1000 |p heartrateToPlaybackRate |
p 4) 0.)0 | 4 b0 |

s s e
if no hr (hr=0), mute O O I .
thehearbeat | (once o1 '\‘ Y197 () [Gesian)

r testRate

)0 gate [rstopHRmovie)
o) o) G esiRate) tesiate rate) frohe(hr=0) stop

B
if $i1 == 0. then $i1
T

p scaleHeartBeat3 p scaleHeartBeat4

if $i1 == 0. then bang
else out2 bang

p onOffinterpolation
udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000

udpsend 127.0.0.1 8000

Figure A.1.c.1. Heart Rate Routing Patch Window. Communication shows information received from
Processing, and routing to OSCulator.

62

Convert HR to Movie
Playback Rate (1 second clip)

pr 60,511
-

abs 0.

e
1.2, J

Figure A.1.c.2. Heart Rate Controls
Movie Playback Patcher

Heart rate scale to playback rate for Kyma ("AorticRegurtitation2 s256")
non-linear playback rate - this patcher averages out the playback

input heart rate
heartrats 1/2 speed ranges between heartrates different hrm range for each rate

0.25 playback ranges b

split59 78 split 78 96 split 96 130 split 130 158 split 158 192

scale 59. ‘scale 78. 96. ‘scale 96. 130. scale 130. 158. scale 158.192. |
A Dot G el

p switchNumbers | | gaelocks

gate opens based HRM goes below
upon HRM rate 51
‘switch 5 J
3
the final playback rate
h 64 bpm audio file in "AorticRegurtitation2 s256" is 2.455515d s long
output playback rate the Heartbeat rate at 0.75 speed = 78bpm. 0.5 = 96bpm 0.25 = 130bpm, 0.125 = 158bpm
a : .

Figure A.1.c.3. Heart Rate Controls Heartbeat/Aorta Audio Playback Patcher

Heart rate opens corresponding gate depending on rate

input heart rate

1

1 5i1 < 51 then 0 spit 5164 §,P'“E5 86 spit 87128 spit 129172 spit 173230

t £ ¢ F ¥

output switch number

Mute Heart audio - Interpolate the volume fades 0to1in1second.

' input bang ON a input bang OFF

tbb . stored variable is tbb if bang received in 2nd input
i i banged out first, then T take current value and go
stores new value for back down to 0.
next interpolation if bang received before
reaching 0, take current value
bang back to 1.
‘Qb r offMute J Ny s offMute
|value HeartvolumeFade |
§.onMute r onMute
—
bondo 2 bondo ensures proper packing

rintf %.2f\, %.2f 990 construct line message as string

tbl

————————,
e set string as message and then bang

(line won't take a string)

line 0.

|value HeartvolumeFade | .I-store new value

output interpolated values h output bang when done

Figure A.1.c.5. Master Heartbeat Audio Volume Control Patcher

63

64

A.1.d. Control Window

start/reset Video/Time
stop counter Reset (Cmd1)

Figure A.1.d.1. Performance Control Patch Window, in Presentation mode

65

r rcmd21 Nrcmd 11 ir A2 T cmd 11 lir cmd21 lir cmd1 Jf | [r filterNumber | [filterExpoValue1 r filterExpoValue2 | [r filterExpoValue3

preset |

Horz €l

0 | Lol lose] oo

rplanoSpeed

A

tbb
e
del 100
m

;s k matesl:

Figure A.1.d.2. Performance Control Patch Window, in Performance mode

metro 1000 H (Cdeorese)

L

counter 0 3
|
|

L putput time 1l

/]

Figure A.1.d.3. Performance Control
Timer as Counter Patcher

Figure A.1.d.4. Performance Control Timer as Time
Patcher

66

A.l.e. MIDI

67

Wii and Accelerometers trigger MIDI nn messages sent to Kyma via PacaConnect or Midiout. Panels
represent sections

Heart Exposition
Channel 1

midiformat 1

et e counerten e ot e counetign | [
O] @ (20
o2 N 72

[r environSelect |

sprintf %ld 60

60 62

sprintf %ld 60
‘midiformat2

sprintf %ld 60
midiformat4

a N

| midiflush |

output MIDI nn to Kyma

Figure A.1.e.1. MIDI Controls Patch Window, all Make Note messages Sent to Kyma via PacaConnect.

A.1.f. Video Control

@00 [VideoControl]

Video Control via MIDI = commands to Execute upon Receiving a MIDI message from KYMA
@ B voimromka
2 b

stripnote
) All of these commands relate
Control Window Reset p sectionCommands J | ig canaiing videalster
route 123456789101112131421 each command == bang to execute mainly video commands (see below)

QT on/off (tums jit.qt.movie on/off) utilize to save framerate] Fades (including xfades)

faderMainMixer faderx09fade
» Qtonoff1 Qtonoff2 b Qlonofra » Qlonoffs » Qlonoff6 4 = main o vy]
use for fading
5 Glonoff1 | qt#1 onfoff (5 QTonofi2) qt#2 onfoff (5 QTonofa | qt#4 onfoff (5 Tonofs | qt#5 onloff (5 QTonoffs | qt #6 onloff po.) between movies fo__)
o movie Mixer Fader 2x09cetfade | fade out for running video
QT framerate multiplier (how many frames will pass with each footstep)] 9
Exposition Section Foot QT Frame rate
p framerateMultiplier1 p framerateMultiplier2 *1_ HeartExpositioniMoy 480.mv4" = 167.6 b faderHRMmixer e et p faderheartVideo
2 FmExpowmcnudm 158 'I' Fader bottom fader 'I'
*3_ChildrenExpo” =
qt#1 S sectionQTmuitpler2) gt #2 “SidewalkRunTest. mov' 175 420319
& hem_moviehterfacer | hrm Mixer Fader 2 x0icetfade | fade out for heart video

Set Comment Field for Control Window designating each Section]

p faderl CDdisplay

set EXPOSITION set FEET EXPO set CHILDREN set TROMBONES set DEVELOPMENT set CODA Gacmess a1 OFF
pIs o pIs pIs L pIs i
s s s s s s s s kedplanestade | fade out for led displays (heart, meters)
Movie Selection Reset Meters (necessary for footstep control of time scrub through rate)]
-l cmd 1 -I cmd4 -I cmd5 -I cmd7 m:) -I cmd3 -v cmd6 m[’
p movi QT1 P movi QT2 e P_ ! !
del 43 del 4000 = del 400 = del 40
del 900 reset JeeNode Section Meters - reset JeeNode Section Meters -
0 used per video section for movie 1 0 used per video section for movie 2
) qt#1 [Select) gt #2 s movieHeariSelect | qt#6 (Heart Movie)

Loop Mode, AutoStart, Rate

Loop Mode [fcmd10)(remd1i){remdt) AutoStart (femdio) Rate (rema10)remat)
del 2000 del 400 del 200

mhn 1 autostart 0

Figure A.1.f.1. Video Control Patch Window, overview of Window layout

8006

Video Control via MIDI commands to Execute upon Receiving
\ﬁ! _ﬂ_\ MIDI IN from KYMA
L

stripnot&

Control Window Reset p section Commands | | 2 of these co

to controlling v

route 12345678910 111213 1421 each command == bang to execute main_lly video commar
T T T T T T

[scmd1) [scmd2) [scmd3) ([scmd4) (sT cmd5) [scmd6) ([scmd7) [scmd8) [;l‘ cmd!

Figure A.1.£.2. Video Control MIDI routing, part 1

69

Receiving a MIDI message from KYMA

All of these commands relate
to controlling video/Jitter

video commands (see below)
=T T

@ [scmd9) [scmd10) [scmdi1) [:cmd12] [:emd13) [:mu] [:cmd21] out of order intro command

Figure A.1.£.3. Video Control MIDI routing, part 2

70

Video Commands to Execute upon Receiving
a MIDI message from KYMA

1st wait until ensures correct speed and movie to moviesource
be redundant in messages

1.

qt # - on/off - mov1 on/ mov2 off

qt multiplier - mov1 = 167.6, mov2 = 158
movie select -movi=2, mov2 =0

jitter on/off - mov1 on/ mov2 off

fade line - i.e. xfade - none

reset section meters - mov1 = reset

new section comment - EXPOSITION

2.
xfade - running Rto L, heart Rto L

3. post HeartExposition
qt # - mov2 on
movie select -mov2= 3, MixerRunningB = src2(#2)

jitter on/off - mov2 on

reset section meters - mov2 = reset FIRST before fade
fade - x09cell off - 5sec

xfade - running Lto R - 1sec

fade - x09cell on - 5sec

new section comment - FEET EXPO

4. before selectASound

qt # - mov1 off

qt multiplier - mov1 = 154.55
movie select -mov1=0
jitter on/off - mov1 off

reset section meters - mov1 = reset

5. Children Exposition

qt # - mov1 on

movie select -movi= 4

reset section meters - mov1 = reset
jitter on/off - mov1 on

xfade-RtoL

qt # - mov2 off after fade

new section comment - CHILDREN

6. Trombones

qt # - mov2 on

qt multiplier - mov2 = ??? try 160
movie select -mov2= 5 (Dillard)
reset section meters - mov2 = reset
fade - x09cell off - 5sec

xfade - running Lto R - 1sec
fade - x09cell on - 5sec
qt # - mov1 off after fade

new section comment - TROMBONES

tums off movie two

7. Development Section

qt # - mov1 on

qt multiplier - mov1 = ??? try 160

movie select -movi=6

("5_WoodsRunning_DevelopmentA")

reset section meters - mov1 = reset

fade - x09cell off - 10sec

xfade - running Rto L - 1sec

fade - x09cell on - 10sec

new section comment - DEVELOPMENT
new breath value 0.555 (breath rate)
tpt preset 1

8. Development Section B

qt multiplier - mov2 = ??? try 160

movie select -mov2=7
(*5_WoodsRunning_DevelopmentB")

reset section meters - mov2 = reset

xfade - running Lto R - 1sec

after xfade, select small moviefile to help framerate

9. Development Section C

qt multiplier - mov1 = ??? try 160

movie select -movi=8
("5_WoodsRunning_DevelopmentC®)

reset section meters - mov1 = reset

xfade - running Rto L - 1sec

after xfade, select small moviefile to help framerate

10. Cut all off
Fade out movie 1
Select mov 1 =9 "6_Butte_View"
Select mov 2 = 10 "6_ButtePan"
Playback Rate of 2 to stop Feet Control, toggle this gate
Playback Rate of 1 to stop Feet Control, toggle this gate
Playback Loop Mode of mov 1 = 2.
mov 1 = autostart
Turn jitter interpolation off for both movies

11. XFade in Butte Pan from Butte View
Loop mode back to 1 for mov 1
Xfade L to R = 500 ms
Playback Rate of 2 to be controlled via Wii, toggle this switch
Turn off meters and rate lcd displays in QT

12. Fade out Butte Pan
Fade x09cell in 5 sec.
XFade R to L = 5040 ms (arbitrary)

13. Final Movie
load mov 1 =11 the Final Movie

begin playing mov 1
fade in mov 1 (x09cell) 8 sec fade

quick fade in once
both Wiis hit A

Figure A.1.f.4. Video Section Command Descriptions Patcher

71

QT on/off (turns jit.gt.movie on/off) utilize to save framerate

p Qtonoff1 p Qtonofi2 p Qtonofi4 p Qtonofi5
qt #1 onloff qt #2 onloff qt #4 on/off qt #5 on/off qt #6 onloff

Figure A.1.£.5. QuickTime Movie ‘qmetro’ Toggle Module

QT on/off (turns jit.gt. movie on/off) utilize to save framerate

(rcmd1 Jfr cmd5 Jfr cmd7)

MUST KEEP QT #1 ON AT ALL TIMES

in order to have running movies work
Redundancy is not a bad thing

o 1

output on/off 1st running movie (gt #1)

Figure A.1.£.6. QuickTime Movie #1 ‘qmetro’ Toggle
Patcher. Controls Running Movie #1.

o)

QT on/off (turns jit.qt.movie on/off) utilize to save framerate

(remd1)(remd10)[remd12) (remd11)(r cmd3) [r cmd6)
del 5000
-

o 1

T J

h output onfoff 2nd running movie (gt #2)

AQ S 8 08 09 8a.

Figure A.1.£.7. QuickTime Movie #2 ‘qmetro’ Toggle
Patcher. Controls Running Movie #2.

Figure A.1.£.8. QuickTime Movie #4 ‘qmetro’ Toggle
Patcher, note Movie #3 does not exist. Movie heartbeat.

Figure A.1.£.9. QuickTime Movie #5 ‘qmetro’ Toggle
Patcher. LCD display heart rate.

output onfoff LCD display meters (gt #6)

Figure A.1.£.10. QuickTime Movie #6 ‘qmetro’ Toggle
Patcher. LCD display meters.

72

73

QT framerate multiplier (how many frames will pass with each footstep)

S o Exposition Section Foot QT Frame rate

'p framerateMultiplier1 | p framerateMultiplier2 | *1HeartExpositioniMov640x480.mv4" = 167.6
"2_FeetExpoBeforeChildren = 158
*3_ChildrenExpo® = 146.33
"SidewalkRunTest.mov" = 175.420319

s sectionQTmulitplier | gt #1 s sectionQTmulitplier2 | qt #2

Figure A.1.f.11. QuickTime Frame Rate Multiplier Control Module

®00 [framerateMultiplier1]

[QT framerate multiplier (how many frames will pass with each footstep)]

[remd1) [remd4) [remd7) (rcmds)
| |

167.6 154.55 200 250

|]

output framerate 1st running movie (gt #1)

Figure A.1.f.12. QuickTime Movie #1 Frame Rate Multiplier
Control Patcher

®NO [framerateMultiplier2]

[QT framerate multiplier (how many frames will pass with each footstep)]

[remd1) [remd6) (remds)

158 180 200

output framerate 2nd running movie (qt #2)

Figure A.1.f.13. QuickTime Movie #2 Frame Rate Multiplier
Control Patcher

Set Comment Field for Control Window designating each Section
md5 md7
(o)) @)

set EXPOSITION set FEET EXPO set CHILDREN set TROMBONES set DEVELOPMENT set CODA
L L

-
loadmess sat OFF

s sectionName s sectionName s sectionName | |s sectionName s sectionName s sectionName | |s sectionName

Figure A.1.f.14. Performance Control Window Comment Field Module

74

Movie Selection
p movieSelectionQT1 | p movieSelectionQT2 | rcmd 1 remd10
del 900
T
1 0

s movieRunningSelect | qt#1 s movieRunning2Select | qt #2 qt#6 (Heart Movie)
4 2

|8 un_movieMixerSelect8 | Mivar B

Figure A.1.f.15. QuickTime Movie Selection Module

Movie Selection

(rcmd1 Jir cmd4 Jr cmd5 lr cmd7 J{rcmd8) [remd6) [remd9 [remd10) [remd13)
‘ ‘ lr‘d%‘ﬁémzooﬁ‘ 361900 |
— T
2 0 4 6 8 9 1
NN L J

n output umenu selection int 1st running movie (gt #1)

Figure A.1.£.16. QuickTime Movie #1 Selection Patcher

[rcmd1 Yr cmd3)[r cmd8 J[rcmd5) [r cmd6 Jfr cmd8 Jr cmd 10 J{r cmd 13)

o‘_a| o 5|7_1o 0
. 3 I I I B

h output umenu selection int 2nd running movie (qt #2)

Figure A.1.f.17. QuickTime Movie #2 Selection Patcher

Turn Interpolation on/off - screen motion when movie is paused
[rcmd4 fremd10) [remd1 Jremd5) [rcmd1 Jfremd10 fremd13) [remd3) fremd5 fremd11)
I,_J }._J
0 1 0 1
L J L J
I W
jitter on/off (s jtterRun2 | [s jtterRunll | jitter on/off

Figure A.1.£.18. QuickTime Movie ‘srcrect’ Pixel Jitter Toggle Module

Fades (including xfades)
p faderMainMixer | o ain movie mixer p faderx0Sfade
Fader top fader,
use for fading
o] () bevesnmeres (o
s un_moveMikerfader | movie Mixer Fader s x0fceffade | fade out for running video
p faderHRMmixer heart movie mixer p faderheartVideo
‘ 'I' Fader bottom fader
s em_movieloerfader | hrm Mixer Fader s x0dceifade | fade out for heart video
p faderLCDdisplay
s ledplanesfade | fade out for Icd displays (heart, meters)

Figure A.1.£.19. QuickTime Movie Fade Control Module

® OO [faderMainMixer]

[Fades (including xfades)] main movie mixer Fader xfader, use for fading between movies

rcmd 1 RtoL [rcmd2) [remd5) [remd7) [remd9){remd12)| | LtoR [remd3) [remd6) [remd8)[remdit)
S - s == e - e - ek - [S
qt#2 del 10000 del 40 del 5000 | | qt#1 del 7000 del 9000 del 40
to #1 to#2 T T
I
1. 1.,0.8000 1.,0.4000 1.,0.1000 0., 1. 1000
| 1 1 J
ine0.”
————]
|ﬁ| output mix fade ‘g‘ output bang when done
&% (interpolated) Lo

Figure A.1.£.20. QuickTime Movie Main Mixer Fade Control Patcher

_ running movie alpha fader, use for fading between movies

‘mm m
8000

output alpha gt #1 3§ output bang when done

a : -

Figure A.1.f.21. QuickTime Movie Running Movie Fade Control Patcher

output mix fade
(interpolated)

- I

Figure A.1.f.22. QuickTime Movie Heartbeat Movie Mixer
Fade Control Patcher

®0 O [faderheartVideo]

Fades (including xfades) heartbeat alpha fader

rcmd 1 E cmd2 rcmd 10
delay 800
T
0. 0.,06200 1.,0.30
i i
ine0.”
output fade output bang
(interpolated) when done

B 4G E 00y @88

Figure A.1.£.23. QuickTime Movie Heartbeat Movie Fade
Control Patcher

©®@D D [faderlChDdisplay]

Fades (including xfades) led display alpha fader

remd1 rcmd10
delay 803
m
i 1.,0.30
1 1
ine0.
output fade output bang
(interpolated) when done

B a8 E 00y a8

Figure A.1.f.24. LCD Display Fade Control Patcher

77

Reset Meters (necessary for footstep control of time scrub through rate)
[rcmd 1)r cmd4 Jr cmd5 J[r cmd7 Jir cmd9) [rcmd3) [rcmd6) [remds)
| y 1 y J o~ ac—— ar——
del 40 del 4000 del 400 del 40
T reset JeeNode Section Meters - 'F_T_T reset JeeNode Section Meters -
0 used per video section for movie 1 0 used per video section for movie 2
5 resetSectonCounter 5 resetSectonCounter2

Figure A.1.£.25. Feet Accelerometer Section Distance Counter Reset Module

78

Loop Mode, AutoStart, Rate
Loop Mode [rcmd10)(rcmd11)fremd1) AutoStart [rcmd10fremd1) [remd10) [remd1) Rate [remd10 Jremdi
S

T - - i
del 2000 del 400 del 200
N T T
2 1 1 0 autostart 1 autostart 0 1 0

J

i N !
s movieRunningLoop |s movieRunningStart | {s movieRunningAutoStart | |s movieRunningRate |

Figure A.1.f.26. Miscellaneous QuickTime Movie Control Module

Video Control Gates
rcmd10 fremd1 rcmd11 Jrcmd1
MIDInn10 from KymaTimeline Open and close Gates controlling
0 1 shuts off time control by Feet 1 0 the playback Rate of Movie 2
|s movieRunning_TimeGate | |s movieRunningQT2_WiiRate |

Figure A.1.f.27. Master Video Control Switch Module

A.l.g. Wiimote Master

800 [wiiMasters]

WiiMote Master Controls predicated on using buttons from both Wiis 1 and 2.

ALL MUTE EXPOSITION FADE OUT FINAL PIANO CHORD Raise both Ams in order
to assist the sound
Home + Home B wil1 + Home wii2 Awiit + A wii2
pak 0 0 pak 00 pak 0 0 ;
A= pak the numbers so no order is necessary ac pak the numbers so no order is necessary T pak the numbers so no order is necessary
unpack unpack unpack
expr $i1 + $i2 expr $i1 + $i2 expr $i1 + $i2
Will only generate a 1 when both buttons Will only generate a 1 when both buttons Will only generate a 1 when both A buttons
are pressed. Otherwise, always a 0. are pressed. Otherwise, always a 0. are pressed. Otherwise, always a 0.
if $i1 == 2 then bang else out2 $i1 if $i1 == 2 then bang else out2 $i1 if $i1 == 2 then 1 else out2 $i1 e
— generated, must
i if $i1 <= 1 then 0 | felease both butions
1 if3i1==0then 0 1 if $i1== 0 then 0 niordeqiD SWch
oY) = back to 0 (added as
I Cf 1 I Cf 1 il
ate gate ensures that only a 0-1 ate gate ensures that Fade In (r cmd 10 Jr cmd 1) cz:Iz failsafe)
% volume interpolation will won't occur until both 1 0
tib CEELELE AR S tib buttons are released.
command has been called. Atop Butte (MIDI nn 10), open gate
g_a(e video fade in of Butte pan
0.5, 0. 500 0., 0.5 1000 0.9,0.10000 0., 0.9 1000
g - -
line 1. 20. line 1. 20. line 1. 20. line 1. 20. 0 p butteFadein
- = e = - = ey — L k5
r I " .
/aliMute/ $1 KYMA CCO8 [Exposition_FadeOut/ $1 KYMA CC82 IpianoFinal/ $1 KYMACC112 po. |
udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 s x09cedFade

Figure A.1.g.1. Wiimote Master Control Patch Window

ALL MUTE

Home + Home

pak 0 0

i pak the numbers so no order is necessary
unpack

i i
expr $i1 + $i2

Will only generate a 1 when both buttons
are pressed. Otherwise, always a 0.

if $i1 == 2 then bang else out2 $i1

——
|
1 if $i1 == 0 then 0
ate gate ensures that only a 0-1
%L volume interpolation will
tib occur after the "All Mute"
command has been called.

0.5,0.500 0.0.51000

ine 1.20. line 1.20.
L = e -

I
/allMute/ $1 KYMA CC08

L
udpsend 127.0.0.1 8000

Figure A.1.g.2. All-Mute Wiimote Master Control Module

EXPOSITION FADE OUT

B wii1 + Home wii2
pak 0 0
I

pak the numbers so no order is necessary
unpack

i i
expr $i1 + $i2

Will only generate a 1 when both buttons
are pressed. Otherwise, always a 0.

if $i1 == 2 then bang else out2 $i1

—
|
1 if $i1 == 0 then 0
ate gate ensures that Fade In
:{L won't occur until both
tib buttons are released.

0.9,0.10000 0., 0.9 1000

line 1. 20. fine 1. 20.
T - e =

i
/Exposition_FadeOut/ $1 KYMA CC92

L
udpsend 127.0.0.1 8000

Figure A.1.g.3. Exposition Fade-Out Wiimote Master
Control Module

FINAL PIANO CHORD Raise both Arms in order

to assist the sound
Awiil + A wii2

wdd pak the numbers so no order is necessary

i

unpack

I I
expr $i1 + $i2

Will only generate a 1 when both A buttons
are pressed. Otherwise, always a 0.

if $i1 == 2 then 1 else out2 $i1 Once alis

generated, must
if $i1 <= 1 then 0 release both buttons

in order to switch
back to 0 (added as
[remd1) kyma TL failsafe)
cmds 0

1 0
-l: Atop Butte (MIDI nn 10), open gate
gate video fade in of Butte pan

rcmd9

| p butteFadein
IpianoFinal/ $1 KYMACC112 po. |
udpsend 127.0.0.1 8000

Figure A.1.g.4. Final Piano Chord Wiimote Master Control
Module

® O O [butteFadein]

Fade in Butte Pan in 400ms

input 1 or0 int

selT

0,1.400 Oto1in400ms
oL

ine0.

output line out message

Figure A.1.g.5. Butte Pan Video Fade-In
Patcher

81

A.1.h. Wiimote 1

A
- Controls associated with the Wii Remote 1 (left hand)

EXPOSITION CONTROL MIDI channel 01

scale 0. 1. 0.3 0.56

FEET CONTROL - Transition MIDI channel 03

if $i1 == 1. then bang “&;m’ubdu
(=) (o1 | secoucvamg =
oot 2

oniononeSaect p onOffinterpolation |
— onOfflnterpolation e T

e o @ oty | et

. udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 udpsend 127.0.0.1 mo

TROMBONE CONTROL - 2nd Section MIDI channel 02
@ D =

@z e]

p pitchesOneSelect |
o]
s stingNum)

EXPOSITION CONTROL MIDI channel 01

scale 0.1.0.50.95 scale 0. 1. 0.3 0.56

‘udpsend 127.0.0.1 8000

Figure A.1.h.2. Wiimote 1 Heart Rate Monitor Exposition Control Module

82

FEET CONTROL - Transition
Front1)

MIDI channel 03

if $i1 == 1. then bang ’
route 1 | route 1 | else out2 bang]
p onOffInterpolation

N 1 CC! mut

dpsend 127.0.0.1 8000

Figure A.1.h.3. Wiimote 1 Feet Exposition Control Module

Wilimote 1 select btw. 1-3, ambient sounds

input Wii left input Wil right

if $i1 <= 0 then 3 else $i1
if $i1 == 4 then 1 else $i1
b0

value envrionOne

output new sound selection

/]

Figure A.1.h.4. Environment Sound Select Patcher, in
Feet Exposition

83

Mute Feet audio - Interpolate the volume fades 0t00.9in 1

second.
n input bang ON n input bang OFF
ko . stored variable is thb if bang received in 2nd input
banged out first, then T take current value and go
stores new value for back down to 0.
next interpolation if bang received before
reaching 0, take current value
bang back to 1.
r offMute s offMute
G | %
|value FeetvolumeFade |
s onMute r onMute
I —
bondo 2 bondo ensures proper packing

?rintf %.2f\, %.2f 990 construct line message as string
t

bl
T T set string as message and then bang
F_ (line won't take a string)
fine 0 - -

|value FeetvolumeFade | Tmm new value

n output interpolated values a output bang when done

Figure A.1.h.5. Feet Sound Mute Patcher, in Feet Exposition

TROMBONE CONTROL - 2nd Section MIDI channel 02
8] 8]

if $i1 == 0 then
bang else out2
bang

scale 0. 1. -0.950.45 0.45,01000
m ‘-ate

D1) boneAmplhtude/ 37 } boneAmplhtude/ 37

1 ns
udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000

am

1

udpsend 127.0.0.1 8000

Figure A.1.h.6. Wiimote 1 Development Section Control Module, part 1

84

boneHarmony/ 3 K
L

udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 | udpsend 127.0.0.1 8000

if $i1 == 1 then bang else out2 bang

p interpolateMuteStrings

1

\udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 |

Figure A.1.h.8. Wiimote 1 Development Section Control Module, part 3

Interpolate Strings Mute - Fade in/out

n input bang ON p input bang OFF

line 1.20. | line 1.20. |
T T T T
s stringSw s stringSw
(rstringSw
e
“switch 12)
1
h output interpolated value
" 2 e : -

Figure A.1.h.9. String Mute Patcher

Panning based upon the Wii's position - drawing within a 2D space

Pan Angle is opposite of Wii Two. So
same motions up/down will cause
WIlis to be in opposite places. This is
due to the control of volume on the
verical pitch axis.

input pitch

expr $f1+8f2/2
0.021.50.127. 0.05 1.0. 127.
0.127.0.0.969 if $f1 < 63. then -1. else 1.

Figure A.1.h.10. Panning of Trombones Control Patcher

Wii select String chords (1-8)

input Wii right

% oE

a 3

Figure A.1.h.11. String Harmony Pitch Selection Patcher

85

86

DEVELOPMENT CONTROL MIDI channel 01

v climaxBoost

‘expr $f1 + §f2 _

‘udpsend 127.0.0.1 8000

1
‘udpsend 127.0.0.1]

Figure A.1.h.12. Wiimote 1 Development/Climax Section Control Module

A.1.1. Wiimote 2

- Controls associated with the Wii Remote 2 (right hand)

EXPOSITION CONTROL

1>

MIDI channel 01

[rronez } [rren2]

@B
p filterControlPresetsKYMA

+0.04325

MIDI channel 01
@ @) @ o

p roadValuelnterpolation
oo
o |

gate
G sonociic)

value roadAmbienceRate

i
udpsend 127.0.0.1 8000

1
idpsend 127.0.0.1 8000

TROMBONE CONTROL - 2nd Section

MIDI channel 02
82)

(racce 12
if $i1 == 0 then bang else out2 bang

Figure A.1.i.1. Wiimote 2 Control Patch Window, overview of Window layout

87

EXPOSITION CONTROL MIDI channel 01

[« rioht2] [rler2} (52

p filterControlPresetsKYMA

scale 0.1.0.50.95 .)
S 0.1403] 05421

udpsend 127.0.0.1 8000

 udpsend 127.0.0.1 8000

s filterExpoValue1

ORORNORORONO

p interpolateFilterValues

to Control Window Constant Level width

Figure A.1.i.3. Filter Control Presets Patcher

88

value expoFitersPreset value expoFiltersPreset

if $i1 <= 0 then 6 else $i1
if $i1 >= 7 then 1 else $i1

0|

value expoFitersPreset

remd2)| cmd2 =
start of
piece

output int 1-6

Interpolate the three filter values of the Exposition with six presets allinputs are bangs

B preset B preset2 B presets B presets B presets B presets

T ~ 2 F ; S L : S T = N L ~ N F ; o
0.1403 0.5421 0.04325 0.04325 0.125 2 0.7188 0.125 0.1403 0.5421 0.125 0.1403 0.7188 0.04325

Time Constant Side Level Bandwidth
p onOffinterpolationTC |p onOffInterpolationSideLevel | p onOffInterpolationBandwidth
| |
O O O

Master Filter
Interpolate Time Value

{s expositionFiterinterpolationTime1)

loadmess 0.1403 loadmess 0.5421 loadmess 0.04325
= =
|}0.1403 I |} 0.5421 I |}0A04325|
n output Time Constant P output Side Level a output Bandwidth

Figure A.1.i.5. Interpolation Between Presets Patcher

Interpolate between Time Constant values
n . stored variable is banged out first, then
input float

stores new value for next interpolation

tfb bang stored value
and then new value

value timeConstant | time constant variable

time interpolation value

bondo 2 C Fi ionTime1)
bondo ensures
proper packing I
rintf %.4f\, %.4f %ld construct line message as string

tbl

T T setstring as message and then bang

2., 2. 1000 (line won't take a string)

- - -

line 0.

T T

[vo. | [value timeConstant) ()
1 |

h output interpolated values u output bang when done

Interpolate between Side Level values
n . stored variable is banged out first, then
input float

stores new value for next interpolation

tfb bang stored value
and then new value

value sideLevel | side level variable

time interpolation value

bondo 2 [rexposlnonﬁlerlmermﬂan'l‘lmei)
bondo ensures [1000. |
proper packing
%n’ntf %.4f\, %.4f %ld construct line message as string
tbl

T T set string as message and then bang
0.5421, 0.5421 1000 (line object won't take a string)

Iine 0.

T
[0. | (value sideLevel | O

h output interpolated values h output bang when done

Figure A.1.i.7. Side Level Parameter Interpolation Patcher

89

Interpolate between Bandwidth values

. Stored variable is banged out first, then
input float stores new value for next interpolation

. bang stored value
and then new value

(value bandwidth) bandwidth variable

time interpolation value
bondo 2 (7 expositonFiterinterpoiationTime 1)
bondo ensures
=]
?rintf %.5f\, %.5f %ld construct line message as string
tbl
T

I set string as message and then bang
(line object won't accept a string)
fine 0. - -
= ™
[>o. | [value bandwidth) O

h output interpolated values h output bang when done

Figure A.1.i.8. Bandwidth Parameter Interpolation Patcher

FEET TRANSITION

MIDI channel 01
[rlefi2] [rright2]

{r cmd5) {r minus2 Jr plus2 |
e

82 Jr A2
(2]

& o
o, ™
o]

p roadValuelnterpolation

s stringChild

childS: ch f ¢
L :
udpsend 127.0.0.1 8000

value roadAmbienceRate

nvironRate/
L
‘udpsend 127.0.0.1 8000

1
udpsend 127.0.0.1 8000

Figure A.1.1.9. Wiimote 2 Feet Exposition Control Module

90

Wiimote 2 select children sounds
(1-11) via bangs

input Wii right

value childOne value childOne

if $i1 <= 0 then 11 else $i1

if $i1 == 12 then 1 else $i1

loadmess 0

value childOne
value childOne

output new selection

Return to normal playback rate with Wii A

input Wii A to output stored value

[value roadAmbienceRate | stored variable is banged out
from Wii A, Wii B serves as gate

rintf %.2f\, 1. 1818 | constructline message as siring
T 1818ms = 33 rpm
tbl
- - setsting as message and then bang
(line won't take a string)
line O - -
- -
[value roadAmbienceRate | ()
E 0 store new value for
. next interpolation
output interpolated values b output bang when done

Figure A.1.i.11. Road Ambience Sound Playback Rate
Interpolation Patcher

91

92

TROMBONE CONTROL - 2nd Section
62

MIDI channel 02

if $i1 == 0 then bang else out2 bang
-
ne 1.20.

mplit
E L
udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000 Sdpsend 127.0.0.1 8000

Figure A.1.i.12. Wiimote 2 Development Section Control Module

Panning based upon the Wii's position - drawing within a 2D space

Pan Angle is opposite of Wii One. So
same motions up/down will cause
Wiis to be in opposite places. This is
due to the control of volume on the
verical pitch axis.

input pitch

expr $f1+$12/2

130.127. 0.20.850.127.
0.127.0.0.969 if $f1 < 63. then 1. else -1.

]

Figure A.1.i.13. Panning of Trombones Control Patcher

DEVELOPMENT CONTROL MIDI channel 01

[52)
p Ramp
Spro1112° 512 expr0.555 + (511 0,03
p interpolateBtwPresets | [r cmd7

Fo. O e

(
(

fife
L

udpsend 127.0.0.1 8000

P

1

Figure A.1.i.15. Wiimote 2 Development/Climax Section Control Module, part 2

udpsend 127.0.0.1 8000 udpsend 127.0.0.1 8000

93

Wiimote 2 select Tpt Time Index 0-9

input Wii left input Wii right

if $i1 <= -1 then 9 else $i1
if $i1 == 10 then 0 else $i1

rcmd7

loadmess 0
o]

-
value tptPreset

output tpt preset

Figure A.1.i.16. Trumpet Time Index
Selection Patcher

Interpolate between Trumpet Time Index

inout float stored variable is banged out first, then stores
nput fioat new value for next interpolation

tib bang stored value
and then new value

remd7) cmd 7 sets up initial tpt value

o mess from Kyma Timeline

bondo 2

bondo ensures

S | 1000. | time interpolation value
?rintf %.4f\, %.4f %ld construct line message as string
tbl
ar T set string as message and then bang

(line won't take a string)
line 0. - -
T T
[ro. [(value presetTpt) O

h output interpolated values u output bang when done

Figure A.1.i.17. Trumpet Time Index Interpolation

Patcher

94

value breathRmp
. =

if $i1 <= -1 then 14 else $i1
if $i1 == 15 then 0 else $i1

rcmd7
loadmess 0

I
value breathRmp
-

Figure A.1.i.18. Breath Rate Calculator
Selection Patcher

Interpolate between rate of Breaths
n input float stored variable is banged out first, then

stores new value for next interpolation

ifb bang stored value

and then new value
remd7 cmd 7 sets up initial value
Fadmess 0555 om Kyma Timeline

bondo 2

bondo ensures

proper packing m time interpolation value
%r‘intf %.4f\, %.4f %ld construct line message as string
tbl
ar T set string as message and then bang

(line won't take a string)

line 0. - -

T TS
[»o. [(value presetBreath] ()

h output interpolated values h output bang when done

Figure A.1.i.19. Breath Rate Interpolation Patcher

95

96

A.2. VPT _4.1b5_RunningExpressions.maxpat Figure Documentation

Hl==
Eler™Y

dim of current layer gmetro speed

dropfolder movies

LX) X)X
XX

a8]

Figure A.2.1. VPT _4.1b5_RunningExpressions.maxpat Main Patch Window, in Presentation mode

(A
0_HRvid320:240kcttor)

(1)

<

a

I

(cop) 10

Patcher controls selectable movie files in a 3D projection environment.
All modules reference separate Max patches.

97

LX) X)X

Figure A.2.2. VPT Main Patch Window, in Patcher mode, part 1

98

master controls

t0 0_ 1_

sel 0
é:patcner Is:t -2100
regexp (*)/
absolutepath
sprintf symout %s/

s folderupdate s cp |

print path
reset
p nongul q speed
rib

to01

sel012
TT—
-8 -20

offset -135 -20

s mp

‘max sendapppath folderupdate

dim of current layer

rdimx rdimy oS

p keyboardshortcuts

z
pattrstorage hc @savemode 2

| dropfolder movies I

offset $1

s swaltchtrig

.[_r’?scpfes ['0] [Io] !
$1

col update 18

bgmoda $1,

|s masterfade | [s movdest)

qmetro

fps

Figure A.2.3. VPT Main Patch Window, in Patcher mode, part 2

ESC: fullscreen

i : layer identifier

m: toggle between move and line in drawmodule
cuelst:

n:next cue

b:previous cue
rreturn to beginning of cuelist
[spacebar]: tngger cuelist

up/down arrow: activate layer for corner pin
(click directly on number of layer to select)

q.s: hold down key while dlicking to select topleft
comer(q) and bottom left (s)

d:activate drawmodule for drawing directly on
output screan

Figure A.2.4. VPT Keyboard Shortcuts

99

Jit.window and Jit.gl.render control patcher

it wendow mofo @depthbuffer 0 @sze 640 480

(# output window info

fal L/

Figure A.2.5. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 1

100

3 input gmetro toggle

erase color 0. 0.

Jt.gl.render mofo

4 output frames per second

Figure A.2.6. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 2

O |p cursortocorner)
L L
‘ s custix S cust2x s cust3x S custdx s custly s cust2y s custdy s cust3y
rcustix rcustly rcust2x | rcust2y rcust3x rcust3y rcustdx rcustdy
Ge]) o)) (o) X N G (o)
pak 0 0 val -1.1.0.0.0. | pak 0 val-1.-1.0.0.1.| (pak10val1.1.0.7.0. (pak1ival1.-1.0.1.1.
&repend setcell
tbl
jit.matrix 5 float32 2 a

it. matrix 5 float32 20 20 @interp 1
output jit. matrix custom corners

Custom Coordinates for mapping jit.gl.render objects

r gcoords
conditions open

the right gate
s condition

unpack 0.0, -
r condition r condition
iel L : ELL :

Figure A.2.8. Custom Coordinates Input Patcher

101

102

Conditional Statements run against custom coordinates

input coordinate floats

[if $f1<0. && $f2>0. then 1 if $1<0. && $f2<0. then 2 if $f1>0. && $f2<0. then 3 | if $f1>0. && $f2>0. then 4 |

output true integers

a "

Figure A.2.9. Conditional Statement Custom Coordinates Patcher

A.2.a. Videoplane Module: Running

] ™

a

Figure A.2.a.1. Videoplane Running, in Presentation mode

103

Videoplane for Running Movies is limited
to a 2D display. Saves on framerate.

o —

kel kel | masiae)

[#2green
T

*
‘\7 |

E
‘

I I R e
J

o
55 55

I cpbang

pak 00val-1.1.0.0.0. 'pak01val-1.-1.0.0.1. pak11val1.-1.0.1.1. pak10val1.1.0.1.0. pakscae0.0.

Figure A.2.a.2. Videoplane Running Patch Window, overview of Window layout

Sxpr ($1192)°25.

set0 ak set 0

Figure A.2.a.3. Videoplane Position Module

104

"

q
-
8
c
w

'r #2swalch T

set1.1.1,
nmnumzss

t

set$1

i i swatch to give user control of BG

saturmnn sl

Swatch for videoplane

(1]

sel #2
E_ rswatchgloba
ti 0 moackﬂ 0.0.
T]T T T r masterfade
100, 07507 N 3
T L
's #ividepplane '
r swatchtrig
pak 0. 0.0.
1L
tOb1
gate -
saturation
prepend set prepend bgcolor
Figure A.2.a.4. Videoplane Color Swatch Module
®00 sub patch]
Color Masks for Videoplane
input RGBA
pak0.0.0.0
tb
T
dadada0
L
pattr rgba
unpack 1. 1. 1. 0.
I-J;ePe"d color prepend set prepend set prepend set prepend set
sends RGB
color to the
videoplane
output RGBA output R output G output B output A

Figure A.2.a.5. Videoplane Color Masks Patcher

105

rua |Srulla e | rul rulka ol rula | rui

pak 0 Oval-1.1.0.0.0. pak 0 1val-1.-1.0.0.1. pak11val1.-1.0.1.1. pak10val1.1.0.1.0.

I

matrix 5 float32 2 2

it.matrix 5 float32 20 20 @interp 1

|

s

.gl-texture mofo @flip 0

Fvp) ((7iviceopane)

L5 l)

.gl.mesh mofo @color 11 11 @scale 1.333 1. 1. @antialias 1 @blend_enable 1 @depth_enable 0 @layer #1

Figure A.2.a.6. Videoplane ‘jit.gl.render’ Control Module

Figure A.2.a.7. Videoplane Positioning Control Module

106

Figure A.2.a.8. Videoplane Movie
Masks Module

A.2.b. Videoplane Module: Heart Rate

Figure A.2.b.1. Videoplane Heart Rate, in Presentation mode

expr ($f1+1.25)°40. expr ($1+2)"25.

Figure A.2.b.2. Videoplane Heart Rate, Positioning Control
Module, with ‘pictslider’ object

107

ruill rul ke ruilll o rul ke rul ke rul ruill rul b

pak 00val-1.1.0.0.0. pakO1val-1.-1.0.0.1. pak11val1.-1.0.1.1. pak10val1.1.0.1.0.

(1

it.matrix 5 float32 2 2

it. matrix 5 float32 20 20 @interp 1

[

|
|
recelve

|
.gl.texture mofo @flip 0

Fvp) (71vceopine

.gl.mesh mofo @color 1111 @scale 1.333 1. 1. @antialias 1 @blend_enable 1 @depth_enable 0 @layer #1

Figure A.2.b.3. Videoplane Heart Rate, ‘jit.gl.render’ Control Module

108

Figure A.2.b.4. Videoplane 3D Positioning Control Module

b cursortocorner

tob ____]
delay 500

O

[rcustix [rcustty | reustax |rcusty | reustse [rcustdy - frcustax | reustay
po. J8[po. JE[po. JSfpo. JEN)o. FN)po. EE)o. [H)o. |

Figure A.2.b.5. Videoplane Custom Corner Positioning Control Module

109

A.2.c. Videoplane Module: LCD

Figure A.2.c.1. Videoplane LCD, in Presentation mode

A.2.d. Preset Module

XL

Figure A.2.d.1. Preset Module, in Presentation mode

110

Stores all layout
information for future use

Figure A.2.d.2. Preset Module, in Patcher mode, part 1

111

‘unpack 00000 . tbl)
sgoBang | ‘unpack 000
r goA

from o time go to preset
Lo J (o) (o)
i
|delay 3000 |
+
|o_ l i}o. l l !]]
current

(e D)

Figure A.2.d.3. Preset Module, in Patcher mode, part 2

112

Preset Module Controls

|sprintf send %ivideoplane blend_mode 6 7 |

-]

Figure A.2.d.4. Preset Module Controls Patcher

Recall Presets Patcher

input bang input bang input from inputto input time
itb |
(route recall | ‘pack go 0 0 1000

oo S
_— %2 e
- z =

| prepend recall | I
line 0. |

:

‘tbb
- T

Figure A.2.d.5. Preset Module Recall Patcher

Stores preset of patch parameters

input bang input store int

itb |
r
' pack store 0

‘tbbl I

Figure A.2.d.6. Preset Module Data Confirmation
Patcher

113

114

A.2.e. Movie Source Module: Running #1

(oo _T3) @)
g | (o | 600)

(0_HRvid320:240ketter.) rate

Figure A.2.e.1. Movie Source Running Patch Window, in
Presentation mode

r folderupdate - _ L
T V : ‘ 1 Movie S | p VideoControl
sprintf symout %s/videa!
I valve_lime
T (o) ecosocsse I cco I o R 2o 6700

porres - e rorecan

Cpocino Tt
-
iR

value movieRunning

i 0 |
0_HRvid320x240ketterbox_Red.mov
-
| [alve movieRunning) prepens ead
s bangum
Movie Control start e
(" Ol MIDInn10 from KymaTimeli
onlolf T T look left to right with some vertical jitter
MIDInn10 from (normal distribution over 10-20 pixel range)
KymaTimeline tums on Start r
pete moe, - (p randominterpotationx) _[p randominterpolationY)
ey
g I x y
qate ey <= == 1 -
- +40 +20 + 560 + 460

!

vieRunningAutoStart
r L i r movdim fr #1dim O get frame fps and _
-:rnyiaFilg e timescale to calculate total loadmess 1
feme %0 tmeformotion rackng oo) Bbo Mo | (0 |
s —

m *# m w pak srcrect 0.0 640 480

|

jt.gtmovie 320 240 @interp 1 @adapt O 'source rectangle

r movieRunningRate

Figure A.2.e.2. Movie Source Running Patch Window, in Patcher mode

r movSele:

r movieRunningSelect
0_HRvid320x240letterbox_Red.mov
value movieRunning

bangum s movieFileName

Figure A.2.e.3. Movie Source Select Module

-1)
if $i1 <= -1 then 6 else $i1

if $i1 == 7 then 0 else $i1

0

s movieRunningSelect

Figure A.2.e.4. Movie Source External Select Control
Module

115

p VideoControl

rvalue_total_time Jrvalue_timescale

) 800600586 [600. |) 30. |) 26.9700
e sl

value time

r otaiCount NN scciontioters T sectionQTmuitpir
K I

p InterpolateNextMowvie Time expr $f1 * $f2

0.
L

Figure A.2.e.5. Movie Source Video Control Variables Module

From jit.qt.movie dumpout, calculates the framecount, fps, and timescale
and then sets the variables

r movieDump

route framecount fps timescale

@)
P I

°I°‘ 50) 30. | }29.97) 600. |
tbbb

oot
|

|framecount i fps | timescale I 600.600586

s (s value_fps) (s value_timescale)
value_frame
count

Figure A.2.e.6. Movie Source Variables Assignment Patcher

116

Interpolate Time Values Based Upon Foot Step Interval

n input footsteps bang

R p taptempo | timer based upon tap
del

i $f1 > 2000.
value time |r value_time ' then 500. else $f1

last time value

new time value time Interval

[»o.] [»o.] [»o.)|

sprintf %.2f, %.2f %id 2 collapse values into
readable argument
| for "ene" object
‘ -
del 3
.: 328.60037
it -3 interpolate time value string
line 0.

T

O

h output interpolated time value

Figure A.2.e.7. Movie Source Video Position Interpolation Calculator Patcher

118

Figure A.2.e.8. Movie Source Position
Interpolation Timer Patcher

— ot
ovie Control MIDIAn10 from KymaTimei

onoff e onoT) shuts off tim control by Feel look left to right with some vertical jitter
MIDINN10 from (normal distribution over 10-20 pixel range)

KymaTimeline tums on Start

= B N e i e
(Ot“j _ - y

r ingStart | [r movdim Jr #1dim O frame fps and [ate l (’ 40 (ﬁ (:-;5 (:-4—65
[movieFie w (J.-_ um. ":;‘m total (u-am 1
Name I =) Tamenl O 8 3 OE
L o ‘ il G G GlEas) GEEELD () (2 screct 0060480)
atmovie 520 240 @interp 1 @adept 0 "source rectangle”

Figure A.2.e.9. Movie Control Module

Interpolate between constantly changing
'srcrect’ pixel X-axis values

n input toggle to turn on metro

-l -

metro 1000

i

tbb bang stored value and then new value

randdist uniform -40. 80.

stored variable is banged out
first, then stores new value for
tff next interpolation

1

value randomUniformX |

1

L
bondo 2

bondo ensure
proper packing

?rintf %.2f\, %.2f 990 construct line message as string

tbl

set string as message and then bang
71.6, 12.71 990 (line won't take a string)

* -
line 0.

T
po.] O

- output interpolated value

Figure A.2.e.10. Interpolation for ‘srcrect’ X-Axis Jitter Patcher

119

Interpolate between constantly changing

srcrect’ pixel Y-axis values

n input toggle to turn on metro

s -

metro 700

L

tbb bang stored value and then new value

randdest uniform -20. 20.

stored variable is banged out
Lff first, then stores new value for
L next interpolation

|value randomUniformY |

l

bondo 2

bondo ensure

proper packing
?rintf %.2f\, %.2f 390 construct line message as string
tbl
19 42, -17.26 390 L set string as message and then bang
e i ~ (line won't take a string)
line 0.

"
L)

1 output interpolated value

Figure A.2.e.11. Interpolation for ‘srcrect’ Y-Axis Jitter Patcher

120

A.2.f. Movie Source Module: Running #2

value movie2Running
|

if $i 1 then 6 else $i1

if 7 then 0 else $i1

1<z .
|
value movie2Running

121

p VideoControl

value_total_time2)value_limescaled valve_framecount2 Jvaive_fps2 |
value total_time2 ~ value timescale2 value framecount2 _ value fps2

value movie2Running

r sectionQTmulitplier2
o |

| Yadmess 175.420319

7 ptterRun2
L5 e look left to right with some vertical jitter
MIDInn10 from KymaTimeline (normal distribution over 10-20 pixel range)
shuts off time control by Feet
{r movi ing_) |prand erpolationX | {p rand: erpolationY |
loadmess 1
\—I = ¥
o Fa - -
[(#1dm) () getiame fps and _ gate Y400 2200 2560 +460
L .. fimescale to calculate total loadmess 1

el 50 time for motion tracking

:
wp#“ w pak srcrect 0.0 640 480

“"source rectangle”

Qmetro wii B () Wii Roll
p WiiControisPlaybackRateForButtePan
J

D (I e @ e

D | (2D D

Figure A.2.f.1. Movie Source Running #2 Patch Window, in Patcher mode

Wiimote 1 Controls the playback rate of Spencer's Butte panning video use Wii to control movie
Rate and Angle gate

input input input
Qmetro Wii B Wii Roll
Gate commands
" o) r sent via MIDI from
mavieRunning I movieRunning movieRunning Kyma
QT2_WiiRate QT2_WiiRate QT2_WiRate Y
MIDInn 11 opens,
) L ! ! ! ~ MIDInn 1 closes
‘gate) ‘gate) ‘gate)
EO. | Wii controls Playback rate
. N A R
tum on ter when siopped” | T— gate (10
,J-

e o)

output gettime for 2 output
smooth Angle control in playback rate
Kyma

Figure A.2.f.2. Wiimote 1 Controls Panning Video Patcher

Butte Pan Movie time will control
panning inside Kyma (as movie
view pans, so does sound)

S utls NG
L

‘udpsend 127.0.0.1 8000 Channel 01

Figure A.2.f.3. Wiimote 1 Controls Kyma 8-channel Panning Patcher

122

123

A.2.g. Movie Source Module: Heart Rate LCD display

gat

iticd 4 char 130 30

thispatcher

LCD display to be used with Video
Projection Tools as a moviesource.

r realRate X
Takes heartrate generated by hrm, and displays on a
videoplane as a jit.lcd
0 heartbeat
tib
font information,
bg color and text
placement inside
s:Erintf write %Id bpm matrix
142 font "Andale Mono" 25, textface bold 00 0, color 0, clear, moveto 10 25
[Andale Mono B
— -
tosymbol 0 bold [
R —
3 heart_number pak font geneva 14 Eepend textface

qt#1

list $1 d QT # so source
Wi isplays may

be selected by various
videoplanes

Figure A.2.g.1. Movie Source Heart Rate LCD Display, in Patcher mode

124

A.2.h. Movie Source Module: Heartbeat Movie

(a#i] EH®
160 120 was| (o] 40 J

Figure A.2.h.1. Movie Source Heartbeat Patch Window, in
Presentation Mode

{r QTonoff4
paitr movan. Movie Control

5 — e
M

i _ loadmess 61 1 loadmess 43 1y loadmess 294 | loadmess 201
] Lr B G (61 {43 || 294 J{203 |
@&l S0 - time for motion tracking
sel10 Lo] %
- ﬁﬂ- T | 1]

r 1 -
" st stop GEiRe GhiD NN MRy GNERND GEIERISU (oo srcrect 00640 450

"source rectangle”

s #1source J|s movieDumpHR :

p— ; e CEN (I CEN e

D D e S =

EDED &
id uirate wout
oo 00 T“'T“ pvar uvideo Jiffpvor urste R pvar uen

Figure A.2.h.2. Movie Source Heartbeat Patch Window, in Patcher Mode

r folderupdate
1
T

sprintf symout %s/videa/

Figure A.2.h.3. Movie Select Heartbeat Module

p VideoControl

rvalee_timeHR Jrvalue_total_timeHR Nrvalue_timescaleHR Birvalue_framecountHR Nrvalue_fpsHR

Figure A.2.h.4. Movie Heartbeat Video Control Variables Module

125

Movie Control
iy
7

185, 67, 886, 480

2

r T) _
st siop @niii2y @RS (@ismecony @M @imssels) (SSIERELSIM (pok srorect 00 640 40

i

I el e

0O - Ioacmess 61 1 loacmess 43 1 ioacmess 294 | loadmess 203
loadmess 1
P oy B e o [|25 2
= - T
=

“at.move 320 240 @interp 1 @adapt 0 'source rectangle’

Figure A.2.h.5. Movie Control Heartbeat Module

126

A.2.i. Movie Source Module: Distance LCD display

LCD display to be used with Video
Projection Tools as a moviesource.

A Takes distance generated by feet accelerometers,
n_ and displays on a videoplane as a jit.lcd

o distance
tib _
I font information,
bg color and text
placement inside
£L sprintf write %ld meters matrix
jit.lcd 4 char 200 30 T
write 35
‘meters

[Andale Mono [-] Joadmess 1
—
e Boma [0
by various

- Ly
(g lcd_dlmnoe) pak font geneva 14 Eepend textface

Figure A.2.i.1. Movie Source LCD Patch Window

A.2.j. Cue List Mixer Module

Figure A.2.j.1. Cue List Mixer Patch Window, in
Presentation mode

127

Controls Xfades
between movies

Click to write: Click to read:
ibb ib g <
0}” ‘}” %ispatche_r Lunm.
_)
coll mycoll - [I]
ot)
[(:)
CTH

Figure A.2.j.2. Cue List Mixer Patch Window, in Patcher mode

A.2 k. Mixer Module: Running

_ Mixer Xfader for Heartbeat Movie
_ % E attr out

(A) (&) |(out)
L UJ L L

prepend set prepend set prepend send
recelve recelve

Figure A.2.k.1. Heartbeat Movie Mixer Patch Window

128

A.2.1. Mixer Module: Heart

_ Mixer Xfader for Running Movies

L Pt

&a_tg E attr out

_BJ -) jﬂ -]
prepend set gr_eoem send
Ecelve

Figure A.2.1.1. Running Movie Mixer Patch Window

129

A.3. Master’s Project Proposal

Terminal Creative Project Proposal
M.Mus. in IMT, University of Oregon
Jon Bellona

Project Objective:

For my terminal creative project in Intermedia Music Technology, I will compose a musical work
translating the physical and physiological experience of running into musical performance. The
piece will explore the creative potentials afforded by data gathered from physiological monitors
and digital motion sensors and mapped to control audio files and musical parameters in real time.

Introduction: Running and Art

Endurance running as realized in sport and the aesthetic principles of Western art and
music both have roots in ancient Greece. Greek writing influenced the Western concepts of
intervals and views on musical affectation.!® Styles of European sculpture and architecture
copied Greek forms. Ancient Greek scripture helped lay the foundation for Western literature.!®

The origins of modern endurance running also began in Greece. The legend of
Pheidippides, who ran 26 miles? to Athens to announce the Greek victory at Marathon, inspired
the modern marathon race. Today there are thousands of 26.2 mile marathons across the world
with millions of participants. Modern endurance running has spawned its own culture, complete
with its own language, literature, and aesthetic. With running and Western music principles
sharing historical roots I proposed the question, “How can running shape the music we create?”

Digital technologies provide a vehicle for answering this question. Advances in music
technology have lead to the development of new electronic instruments, new compositional
tools, and new styles. Composers using digital technology have at their disposal tools that both
facilitate and inform creative decisions in their pursuit towards art. Integration of new
technologies has changed how composers both think about and compose music. Through digital
data selection, acquisition, modification, and mapping to create and control music, composers
now shape streams of data into musical journeys.

The application of technology in running, specifically digital monitoring systems used in
research on the human body, reveal that the body produces constant data. Heart rate, body
temperature, oxygen levels, neurotransmitters, brainwaves: all of these internal processes can be
recorded and stored. The body’s physical movement may also be captured using sensors
measuring distance, time, and acceleration. Both external movement and internal body data may

18 J. Peter Burkholder, Donald Grout, Claude Palisca, eds., A History of Western Music, 7th ed. (New York, NY:
W.W.Norton, 2006).

19 H. James, Sarah Lawall, Lee Patterson, eds., The Norton Anthology of Western Literature, Volume 1 (New York,
NY: W.W.Norton, 2006).

20 Primary evidence of historian Herodotus suggests that Pheidippides actually ran 145 miles to Sparta and back
requesting troops for the famous 490 B.C.E. battle against the Persians.

130

be mapped to control non-physiological variables, like musical parameters. The experience of
running can thus be recorded, modified, and digitally mapped to create music.

Through technology, running and music have an opportunity to merge. Yet, this time, the
relationship between music and running will not be its historical influence, but rather will be a
modern alliance, creating music from data emitted by the human body. The exploration into the
musical possibilities of physiological monitors and digital motion sensors provide an excellent
avenue with which to compose new electronic music.

Outline of Project Proposal

I will use physiological monitors and digital motion sensors to translate the human
activity of running into a musical performance. Building upon histories of gestural performance
and parametric musical relationships, I will collect data of the physiological status of a runner in
real time and map this data to create an original composition to be performed live. The
compositional process will involve several distinct steps.

First, I will acquire data from the human body in real time. The word ‘acquire’ here
means to track the internal and external components of the body as streams of data and transfer
this information into the computer. The streams of ‘human body’ data I am specifically interested
in acquiring relate to running: heart rate, arm swing acceleration, foot cadence, pace, and relative
distance. To this end, I will investigate various physiological monitors, digital motion sensors,
and preexisting digital controllers as they relate to the human body in motion. These monitors
and controllers will include heart rate monitors, foot pods, oximeters, FSR sensors, and Nintendo
Wii controllers.

Next, I will research and implement various transmission protocols in order to transmit
the data into the computer for musical mapping. These transmission protocols will include, but
are not limited to, the ANT+ wireless protocol, RF transmission, RS-232 serial transmission,
Bluetooth and the OSC protocols. My research on transmission protocols will influence the
computer software I will adopt for polling the data.

Once the streams of human body data are inside the computer, I will explore the various
ways I can modify the data in programming environments learned during the course of my
studies at the University of Oregon. Several software/hardware systems I will integrate for the
composition and performance include Max/MSP/Jitter, Processing, and Kyma. Implementing
and combining these programming environments will be important in the final execution of the
piece. Max/MSP/Jitter will be the central data hub, modifying the data in various ways, and
routing the information to and from Processing, to and from Kyma. Processing will draw
supporting visuals, making the performance a multimedia experience. Kyma will map the data to
control various parameters of the digital sound processing of real-time audio. Kyma will also
serve as the audio generator and mixer, outputting the sounds of the composition for an 8-
channel loudspeaker performance.

My creative terminal project will permit me to harness new, specific data streams in order
to explore their creative use, and will also allow me to explore the expositions of gestural
performance through a preexisting language: the perceptual and cultural language of running.
Because I hope to articulate the journey of a run through the use of physiological monitors and

131

digital motion sensors, I will study the design trends of new digital musical instruments in order
to learn more about digital mapping strategies and performance practices.

My creative terminal project will attempt to creatively combine my passions of running
and technology and will be the culmination of my coursework and studies here at the University
of Oregon. The project will employ digital sensors and protocols I first uncovered during my
graduate studies. The composition and performance will utilize programming languages and
graphic environments that I learned during the program’s coursework. My terminal project
would not have been possible before coming to Oregon, and it is the hope that the work will
display the breadth of my technical, creative, and performance skills polished through the
Intermedia Music Technology program.

In addition to the creation of a final composition and performance, I will document the
compositional process, recording research on physiological monitors, transmission protocols,
mapping strategies, and compositional methods used and explored. I will compile the various
processes of my project into a small portfolio. This portfolio will include descriptions of
mapping strategies used, an annotated list of hardware equipment, software, and data protocols
considered, and layouts of original programs created with Max/MSP/Jitter and Processing. I will
also capture audio and video recordings of the final performance. This documentation will
supplement my creative terminal project and will serve as a resource for anyone wishing to
explore the creative applications afforded by these tools. The creative terminal project also lays a
working foundation, as after the completion of this project and my Masters degree, I hope to
continue composing using these tools, strategies, and techniques.

132

A.4. Graphical Icon Legend

Hardware
m Polar Heart
Rate Monitor
Heart Rate

Monitor Interface
(HRMI)

Nintendo Wiimote

Dual-Axis
Accelerometer
+ JeeNode Tx

JeeNode Rx
USB bub

MacBook Pro

Paca(rana)

w Video Projector

Figure A.4.1. Hardware icons used throughout the documentation

133

Connections/Protocols

€3 Bluetooth Bluetooth

KP Universal Serial Bus
uss (USB)

Firewire 800

FireWire

UQU Ethernet

ETHERNET

VGA

ﬁ Open Sound Control
(OSC)
Midl Musical Instrument

e Digial Interface (MIDI)

Figure A.4.2. Connection Standards and Protocols icons

134

Software

Max/MSP/Jitter

o ol o
aiﬁ ‘L Kyma
X/ OSCulator

Processing

PacaConnect

Figure A.4.3. Software icons

135

A.5. Resource URLs

ANT+ wireless: http://www.thisisant.com/pages/technology/what-is-ant
CNMAT (OSC-route, randdist) Max objects: http://cnmat.berkeley.edu/downloads

HC Gilje’s Video Projection Tools: http://hcgilje.wordpress.com/resources/video-

projection-tools/

JeeNode v.4: http://jeelabs.net/projects/hardware/wiki/JN4
Max/MSP/Jitter: http://cycling74.com/products/maxmspjitter/

MaxLink: http://jklabs.net/maxlink/

OSCulator: http://www.osculator.net/

OSC: http://opensoundcontrol.org/introduction-osc

PacaConnect: http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
Polar product - HRM: http://www.polarusa.com/us-en/support/downloads?

85256F470048B0BC8525747300610169

Processing: http://processing.org/
SparkFun - ADX1L.322 dual-axis accelerometer: http://www.sparkfun.com/products/849

SparkFun - HRMI: http://www.sparkfun.com/products/8661
Symbolic Sound (Kyma): http://www.symbolicsound.com/

A.6. Included DVD Contents
a. Running Expressions .pdf Documentation
e. External Libraries
1. CNMAT objects (OSC-route, randdist)
1i. MaxLink (version 0.36)
c. Video documentation: Studio 74 performance, April 15, 2011
d. Stereo and Eight-channel Audio documentation: Studio 74 performance, April 15, 2011
b. Performance files

i. Kyma Files (version 6.79)

http://www.thisisant.com/pages/technology/what-is-ant
http://www.thisisant.com/pages/technology/what-is-ant
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://jeelabs.net/projects/hardware/wiki/JN4
http://jeelabs.net/projects/hardware/wiki/JN4
http://cycling74.com/products/maxmspjitter/
http://cycling74.com/products/maxmspjitter/
http://jklabs.net/maxlink/
http://jklabs.net/maxlink/
http://www.osculator.net
http://www.osculator.net
http://opensoundcontrol.org/introduction-osc
http://opensoundcontrol.org/introduction-osc
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://processing.org
http://processing.org
http://www.sparkfun.com/products/849
http://www.sparkfun.com/products/849
http://www.sparkfun.com/products/8661
http://www.sparkfun.com/products/8661
http://www.symbolicsound.com
http://www.symbolicsound.com

ii. Max/MSP/Jitter Patches (version 5)
iii. OSCulator File (version 2.10.6.2)
iv. Processing sketch (version 1.1)
f. Template Max Patches
1. Max/MSP/Jitter template patch for JeeNode & Accelerometers

ii. Max/MSP/Jitter template patches for Video Projection Tools

136

