
Mapping Solutions for Kinectʼs User Tracking via OSC
Jon Bellona

University of Oregon
750 E. 25th Ave.

Eugene, OR 97405
1-315-404-2239

bellona@uoregon.edu

ABSTRACT
In this paper, I present a Max/MSP/Jitter interface for routing and
displaying user-tracking data from the XBox Kinect via OSC
messages. The paper addresses the OpenNI framework, the
OSCeleton proxy software which formats and transmits user
tracking data as OSC messages, and mapping strategies for forty-
five points of continuous control data from a single user.

Keywords
Kinect, Max/MSP/Jitter, github, OpenNI, Middleware, NITE,
jit.freenect.grab, Open Sound Control, OSCeleton, Terminal,
Processing, Kyma.

1.INTRODUCTION
The release of the Kinect for the XBox in November 2010 set off
a frenzy in the hacking world, with a cash prize for creating
computer drivers that would connect to the Kinect camera.[1]
Described as a "controller-free gaming and entertainment
experience" for the Xbox 360 video game platform,[2] the Kinect
device produces a depth map, an image where pixel values
represent the distance from the camera (X,Y,Z values). In addition
to the possibilities for working with 3D matrices, users can be
simultaneously identified and tracked, enabling powerful gestural
control tools for the electronic composer or digital artist.

In order to streamline the process for composers and artists alike
wishing to access user-tracking data afforded by the Kinect
device, I attempted to create an accessible Max/MSP/Jitter
interface to the Kinect’s depth map bundled with a user-tracking
library. My aim was to compile a (somewhat) ‘plug-and-play’
interface that utilized open-source software and protocols, like
OSC message forwarding controls, and offered functionality that
overcame mapping challenges and potential performance pitfalls.
This document serves to explain user tracking through an
examination of the OpenNI framework, to discuss potential issues
and challenges inherent in selected Kinect open-source libraries,
and to offer a tangible solution (Kinect-via-OSCeleton Max
interface) for anyone wishing to explore user tracking with the

Kinect device for creative applications. Currently, my Kinect-Via-
OSCeleton interface and installation instructions are available at
http://deecerecords.com/kinect.html.

2.NATURAL INTERACTION (NI)
Natural Interaction (NI) refers to human’s interaction with
technology, especially in terms of experience coming from the
senses.[3] From interactive to interface design, which look at
enhancing user experience through behaviors and simple design,
there has been an increased focus on our natural interaction with
technology and its cultural impact, especially with the increased
use of mobile devices, like multitouch cell phones and laptop
computers. More recently, companies like PrimeSense are helping
to create controller-free devices (the Kinect), that change user
experience through the concept of natural interaction, specifically
body motion tracking. The following sections discuss the
overarching framework of natural interaction related to the Kinect,
gradually narrowing from the larger framework to the specific
open-source drivers that handle user tracking.

2.1OpenNI
OpenNI is a not-for-profit dedicated to promoting “the
compatibility and interoperability of Natural Interaction (NI)
devices, applications and middleware.”[4] OpenNI is also a
framework that provides an application programming interface
(API) for writing applications utilizing natural interaction.[5] The
API covers communication with both low-level devices (e.g.
vision and audio sensors), as well as high-level 'middleware'
solutions (e.g. for visual tracking using computer vision).[5] The
ultimate goal of OpenNI is to develop a standard between NI
devices, perhaps similar to what MIDI accomplished with a
musical protocol between music devices. Thus far, however,
OpenNI has only released open-source drivers for use with
OpenNI devices, like the Kinect.

2.2Middleware
Middleware is computer software that connects software
components and their applications together. Middleware sits "in
the middle" between application software that may be working on
different operating systems and “allows multiple processes
running on one or more machines to interact.”[6] Middleware can
be referred to as integration software because the software allows
data to be accessed between multiple databases and multiple
machines. There are many OpenNI middleware modules to be
used with OpenNI devices, including point tracking and user
tracking.

http://deecerecords.com/kinect.html
http://deecerecords.com/kinect.html

2.3NITE
PrimeSense NITE is the specific middleware for OpenNI
containing the algorithmic infrastructure for user identification
and gestures recognition, as well as the control framework that
manages the acquisition and release of control between users.[6]
Implementing the NITE middleware module enables the use of
powerful and complex programming functions and, at the same
time, offers a more stable system for development testing.

Figure 1. User-tracking skeleton with NITE Middleware in the
OpenNI framework.

Not all user tracking utilizes a skeleton framework, but OpenNI’s
user tracking identifies several key reference points of a user’s
body, namely body joints that are tracked in real time. Each pixel
point, or joint, transmits three coordinate values (X, Y, Z) at a rate
of 24-30 frames per second, depending on the software written to
run with OpenNI framework. The sample OpenNI user tracking is
visually identified by a colored skeleton.

3.INFORMATION RETRIEVAL
3.1Open Sound Control (OSC)
Open Sound Control (OSC) is a stable, 32-bit protocol used for
interconnecting hardware controller devices to the computer, as
well as software on one or more computers.[7] Because OSC has
taken off as a stable and fast protocol with user-defined packets of
information sent to/from computers and devices on the same local
network, I specifically sought after proxies that would translate
and transmit user-tracking skeleton information as OSC messages.
This guiding principle lead me to research and integrate the
following open-source software.

3.2SensorKinect Library
Before the OpenNI framework can work with a Kinect device, a
software driver must be written or installed to create a digital
handshake between the computer and the Kinect device. The
SensorKinect Library is an open-source software driver that
registers the Kinect device with the OpenNI framework (which
must also be downloaded and installed) and allows access to the
Kinect’s depth map.[8] Currently, the SensorKinect Library only
grants one application access to the Kinect device at any one time.

3.3OSCeleton
After drivers connect the computer to the Kinect, additional
software must be written or installed to access the PrimeSense
middleware of the OpenNI framework. OSCeleton is an open
source proxy software that takes user-tracking skeleton data
created with the OpenNI framework and the Kinect depth map
and then translates and transmits skeleton joints’ X,Y,Z
coordinates as OSC messages. With OSCeleton transmitting joint
values as OSC messages, I could harness point specific data
through a variety of software, namely Max/MSP/Jitter, Symbolic
Sound’s Kyma system, and Processing. While OSCeleton was
created to work with Windows, Linux, and Mac OSX, my
research, including two installs and interface work, was all
completed on computers running the Macintosh OSX platform.

3.4Terminal
On the Macintosh platform, OSCeleton software requires
Terminal to run.[9] Terminal is a line interface to control
underpinnings of the UNIX based OS.1[10] After executing the
OSCeleton program, Terminal sits in the background with
minimal load on the CPU.

Figure 2. Activity Monitor showing Terminal, OSCeleton, and
Max/MSP/Jitter tracking one user. Terminal only uses 10.1
MB of real memory, compared to 96.7 MB for Max/MSP.

3.5Max/MSP/Jitter
Max/MSP/Jitter is a graphic programming environment for music,
audio, and multimedia. Due to the programming flexibility, ability
to communicate between various software, and dedicated Max
community, I chose Max/MSP/Jitter as the environment to build a
working interface with the Kinect.

3.5.1Jit.freenect.grab
Matrix data coming directly from the Kinect may be accessed
inside of Max/MSP/Jitter with the external jit.freenect.grab by
Jean-Marc Pelletier.[11] His jitter external excellently integrates
Kinect drivers to Max/MSP/Jitter, requiring no additional software
drivers, and jit.freenect.grab can control the Kinect’s tilt motor.

1 All Macs have Terminal located in their Utilities folder inside the Applications folder. More about Terminal and Terminal commands may
be found online at: http://www.scribd.com/doc/2084227/Mac-OS-X-Terminal-Commands-list

http://www.scribd.com/doc/2084227/Mac-OS-X-Terminal-Commands-list
http://www.scribd.com/doc/2084227/Mac-OS-X-Terminal-Commands-list

Many open source drivers do not offer servo motor control,
making this ‘plug-and-play’ Max external very useful.
Jit.freenect.grab also retrieves RGB images, depth maps, and
accelerometer information via matrices; yet, there is no user
tracking capability offered. Due to the inability to track points and
users, my research shifted to working with the OpenNI
framework, ultimately settling upon the OSCeleton proxy.

3.5.2OSC-route
OSC-route is a Max external written by researchers at CNMAT
(Center for New Music and Audio Technologies).[12] The
external allows OSC messages to dispatch inside of Max/MSP/
Jitter. Along with Max ‘udpreceive’ objects, all OSC messages
may be identified and subsequently parsed.

4.POTENTIAL ISSUES & CHALLENGES

4.1OSCeleton Execute
Because the OSCeleton software is only executable once via
Terminal, alterations to the UDP port or IP address cannot be
changed during runtime. Any change in address means a program
kill, as well as a loss in any skeleton data. An important factor in
developing my Kinect-via-OSCeleton interface was to ensure that
UDP port changes could be altered ‘on-the-fly’ without severing
the connection between the Kinect and OSCeleton. [Section 5.2]

4.2Single UDP port
OSCeleton only offers a single UDP port to transmit user tracking
data. Because UDP ports cannot be shared, using a single port
that is unalterable during OSCeleton’s runtime is potentially
problematic, especially if a user wants to treat a single data stream
differently. For instance, sharing one skeleton for musical
mapping with Max/MSP/Jitter and visual mapping with
Processing is not possible under the current OSCeleton build. An
external interface is required.

4.3Non-Visual Skeleton Confirmation
Since OSCeleton displays no visual confirmation of skeleton data
in its viewer window, a user must view the Terminal window in
order to know when a user has been identified, has begun
calibrating, has successfully completed calibration, and/or when a
user has been lost. The lack of color identifying users and a
redundant skeleton display make the program less user friendly,
especially for users needing quick visual confirmation during a
live performance setting.

4.4Non-Hierarchical OSC Message Handling
OSCeleton does not pack OSC messages into a hierarchical
framework. The format of incoming OSC messages can be broken
down as such: a generic “joint” identifier, the specific joint name,
the user number, and the respective X, Y, Z values.

Figure 3. Format of OSCeleton OSC message.

User identification number occurs after the joint identifier, which
potentially creates issues for routing. For example, if user1 is
being tracked within a performance and user1 is dropped, the user

may be re-identified as user2 or user3. Since user# comes after
joint identification, effective re-routing of skeleton information
must be handled after OSC parsing, which poses challenges for
mapping.

4.5User Tracking Handling
The NITE Middleware handles all user-tracking identification.
The tracking is fast and efficient; however, if any user is lost
during a performance, a re-calibration must occur. Even though
re-calibration can be handled quickly ‘on-the-fly,’ the user
tracking number is handled by the middleware, preventing a hard
coding of users to their respective user number. Any mapping that
requires a specific user number must be handled after the OpenNI
framework and after parsing OSC joint messages.

Figure 4. Psi pose used for user tracking calibration.

While I raise several potential issues with OSCeleton, there are
many benefits to the software, including the ability to execute a
reverse screen for tracking, the ability to simultaneously handle
fifteen joint messages for four users which means up to one-
hundred eighty continuous control values at any one time, and the
ability to provide a fast (30 fps) and stable environment for
transmitting user-tracking skeleton data as OSC messages over a
UDP/IP port.

5.KINECT-VIA-OSCELETON INTERFACE
The Kinect-Via-OSCeleton Max interface is an input/output
routing interface for use with the Kinect hardware and OSCeleton
software. The interface addresses issues of the OSCeleton
software by offering a clean display and robust control panel for
disseminating skeleton information and OSC joint messages for
up to four users. The open-source interface and installation guide
are available for download at http://deecerecords.com/kinect.html

http://deecerecords.com/kinect.html
http://deecerecords.com/kinect.html

Figure 5. Kinect-Via-OSCeleton Max interface.

5.1Input Routing
The Kinect-Via-OSCeleton interface addresses OSCeleton’s
transmission of non-hierarchical OSC joint messages with an
associative array. Kinect-Via-OSCeleton’s associative array is a
Max ‘coll’ object that uses strings as variable key indices, which
may be parsed directly from incoming OSC messages. The
variable key values alter ‘forward‘ objects inside of Max/MSP, so
that routing may be changed ‘on-the-fly’ as well as after OSC
messages have been parsed. Joint names serve as key indices
inside the associative array. All routing within Kinect-Via-
OSCeleton may be changed while OSCeleton is running and after
a user has been identified and calibrated.

5.1.1Single-User Mode
Single-User Mode is defined as a control mode that, regardless of
user#, forwards all joint messages on to user1. The Single-User
Mode enables best solo performance practice, in that, regardless
of OSCeleton and the NITE middleware, all OSC messages
existing inside of Kinect-Via-OSCeleton will be handled by user1
‘send’ and ‘receive’ objects. Since routing is no longer dependent
upon an external identification number, the user gains routing
flexibility over parsed OSC joint messages.

5.1.2Multi-User Mode
Multi-User Mode is defined as a control mode that forwards all
user# joint messages on to their respective user#. Since Kinect-
Via-OSCeleton offers flexibility in routing non-hierarchical OSC
messages by changing user# associations, Multi-User Mode resets
the routing functions to parse OSC messages as was originally
designed. As such, Multi-User Mode is the default mode.

5.1.3Individual Routing
Individual Routing is defined as a forwarding function that allows
any user# joint messages to transmit onto another user#, including
itself. If mapping calls for specific user# associations, the
Individual Routing function enables specific user# routing. The
function may best serve multi-user performance practice, where a
user may be lost and needs to be reinserted as a specific user#
after re-calibration, or where a mix up between multiple users can
be individually re-routed without having to terminate the main
OSCeleton software.

Figure 6. Kinect-Via-OSCeleton routing controls.

5.2Output Routing
The Kinect-Via-OSCeleton interface also offers output routing
functions that address issues discussed in Sections 4.1 and 4.2.
Since OSCeleton only offers a single UDP output port that is
unalterable after execute, I decided to apply a multi-machine
forwarding approach, similar to that of a star network. As soon as
the Kinect-Via-OSCeleton receives OSC messages over its UDP
port, the interface can immediately forward up to four ‘clean’
copies of the data over user-defined UDP ports and IP addresses.
Other applications and other computers may parse and map these
forwarded copies of OSC skeleton data. Any additional computer
that is running the Kinect-Via-OSCeleton interface to handle a
forwarded OSC copy may, in turn, forward up to another four
copies.

Figure 6. Kinect-Via-OSCeleton forwarding controls.

Forwarding skeleton object information should be handled at the
root level, not after OSC parsing. Re-routing copies of skeleton
data across OSC at the root level provides cleaner handling of the
data, streamlining unnecessary strands of singletons. In addition,

since Max ‘send’ and ‘receive’ objects are recognized locally,
parsed OSC joint messages used within the Kinect-Via-OSCeleton
interface will not interfere with other copies on other machines.
Therefore, the interface may be easily integrated into computer
ensembles. Multiple computers can map a single skeleton data
object differently, all running from a single Kinect device.

6.CONCLUSIONS
The OSCeleton software proxy is but one of many open source
software applications created to work with the Kinect and the
OpenNI framework. Because my aim was to establish a working
solution today for users interested in working with user tracking
with the Kinect depth map, my decision to use OSCeleton
centered around stable user-tracking functions and OSC
messaging. My hope is that this paper and downloadable interface
may serve new works that utilize the Kinect for real-time
electronic performance. The Kinect-Via-OSCeleton interface and
installation instructions may all be found online for free at http://
deecerecords.com/kinect.html.

7.ACKNOWLEDGMENTS
My many thanks to John Park for guiding me throughout the
research process and Jeffrey Stolet for his input and support.

8.REFERENCES
[1] Adafruit. 2010. We Have a Winner: Open Kinect driver(s)

released. Adafruit Industries Blog (Nov. 11, 2010). DOI=
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-
open-kinect-drivers-released-winner-will-use-3k-for-more-
hacking-plus-an-additional-2k-goes-to-the-eff/.

[2] Wikipedia. DOI = http://en.wikipedia.org/wiki/Kinect.
[3] Valli, A. “The Design of Natural Interaction.” (October 28,

2006). DOI = http://www.naturalinteraction.org/
[4] PrimeSense. DOI = http://www.joystiq.com/2010/12/17/

primesenses-tamir-berliner-on-the-future-of-natural-
interaction/

[5] Wikipedia. DOI = http://en.wikipedia.org/wiki/Middleware
[6] PrimeSense, NITE Middleware. DOI = http://

www.primesense.com/?p=515
[7] Open Sound Control. DOI = http://opensoundcontrol.org/

spec-1_0 (accessed February 03, 2011).
[8] SensorKinect. DOI = https://github.com/avin2/SensorKinect
[9] OSCeleton. DOI = https://github.com/Sensebloom/

OSCeleton
[10] Terminal. Apple Computer. DOI = http://www.apple.com/

macosx/apps/all.html#terminal
[11] Pelletier, J.M. Jit.freenect.grab. DOI = http://jmpelletier.com/

freenect/
[12] Wright, M. and Zbyszynski, M. OSC-route. DOI = http://

cnmat.berkeley.edu/downloads

http://deecerecords.com/kinect.html
http://deecerecords.com/kinect.html
http://deecerecords.com/kinect.html
http://deecerecords.com/kinect.html
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-eff/
http://en.wikipedia.org/wiki/Kinect
http://en.wikipedia.org/wiki/Kinect
http://www.naturalinteraction.org
http://www.naturalinteraction.org
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://www.joystiq.com/2010/12/17/primesenses-tamir-berliner-on-the-future-of-natural-interaction/
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Middleware
http://www.primesense.com/?p=515
http://www.primesense.com/?p=515
http://www.primesense.com/?p=515
http://www.primesense.com/?p=515
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
https://github.com/avin2/SensorKinect
https://github.com/avin2/SensorKinect
https://github.com/Sensebloom/OSCeleton
https://github.com/Sensebloom/OSCeleton
https://github.com/Sensebloom/OSCeleton
https://github.com/Sensebloom/OSCeleton
http://www.apple.com/macosx/apps/all.html
http://www.apple.com/macosx/apps/all.html
http://www.apple.com/macosx/apps/all.html
http://www.apple.com/macosx/apps/all.html
http://jmpelletier.com/freenect/
http://jmpelletier.com/freenect/
http://jmpelletier.com/freenect/
http://jmpelletier.com/freenect/
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads

