
jpb.mod: a Max/MSP data modification library for rapid

prototyping

Jon Bellona

Virginia Center for Computer Music

(VCCM)

University of Virginia

Charlottesville, VA

jon@jpbellona.com

ABSTRACT
This paper presents a Max/MSP library that addresses data
modification (e.g. sensor conditioning) through a rapid-
prototyping approach. Drawing upon digital instrument
design context, we reframe common data modifications fre-
quented in the musical and digital art compositional pro-
cess. We consider existing mapping systems and literature
in order to catalog data modification primitives with goals
of creating modular data modification tools (jpb.mod). The
jpb.mod library, a Max 6 package built around these primi-
tives, handles the modification of a singular data stream for
rapid prototyping. The jpb.mod data modification library
draws upon the theory and principles of UX and UI design,
considering both e�ciency and usability.

Author Keywords
Max/MSP, data modification, Max 6 package, UX, rapid
prototyping

ACM Classification
H.5.2 [Information Interfaces and Presentation] User Interfaces-
Graphical user interfaces (GUI), H.5.2 [Information Inter-
faces and Presentation] User Interfaces-Prototyping, D.2.2
[Software Engineering] Design Tools and Techniques-Modules
and interfaces, H.5.5 [Information Interfaces and Presenta-
tion] Sound and Music Computing.

1. INTRODUCTION
“Everything should be made as simple as possible, but not
simpler.” - Albert Einstein

Existing studies conclude that complex mapping systems af-
ford more complex possibilities [1][2][3]. If complex mapping
systems are to be developed, used, and refined, our compo-
sitional process should support the generation of complex
mapping relationships with relative ease and flexibility. Ex-
isting toolkits, libraries, and mapping systems do o↵er solu-
tions to various mapping problems (e.g. interpolation [1][4],
input/output [5][6], and data modification [5][7]). Yet, these
solutions do not resoundingly solve the challenges of devel-
oping complex mapping systems. We explore rapid proto-
typing as an alternative strategy. By applying a rapid pro-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

totyping framework on one particular subset of mapping—
data modification—we define and design tools for aiding the
creation of complex mapping relationships.

1.1 Rapid Prototyping
In industry, the role of rapid prototyping is to“compress the
development cycle in order to take advantage of growth” [8].
For digital music application, we borrow the rapid prototyp-
ing process common to iteration steps in design thinking
[9]. Applying rapid prototyping to the creation of music
software tools may result in a deepening of the musical cre-
ation process—more time spent listening, developing aes-
thetics and concepts, acquiring user feedback, and refining
core system elements. By addressing needs for increased
time in responding to sonic results, rapid prototyping may
help refine how we approach complex-mapping problems.

1.2 Mapping
We chose to develop core, rapid prototyping tools essential
to mapping. Mapping has been “commonly defined as the
translation layer correlating gesture to sound” [10]. Start-
ing under the guise of digital musical instrument design,
mapping is but one of an instrument’s three elements [3]:

* gesture input
* mapping
* sound production output

Breaking down mapping into an element list reveals yet
another triadic set, one that includes data modification.

* data input
* data modification
* data output

Figure 1: Elements of a digital musical instrument
definition highlighting data modification as part of
the mapping process.

2. DATA MODIFICATION
Because data modification is a process used frequently within
mapping (e.g. sensor conditioning), we chose to focus on
developing data modification tools. The term “data mod-
ification” is what the name implies: a transformation of
data, which may be used in preparation for or in conjunc-
tion with control assignment. In fact, dedicated topics on
mapping strategies contend that most input data requires
some modification before the data may be used to control
parameters and/or sound synthesis [11][12][13].

Figure 2: Signal flow diagram of digital data modi-
fication as part of the mapping process.

2.1 Data Modification Example
A basic example of data modification may further help out-
line its essential nature. (Table 1) details the mapping of a
0-1 floating-point number onto a chromatic scale.

Table 1: Data Modification Example
Data input 0-1 floating-point numbers.
Data modification Scale 0-1 to 0-12.

Thin floating-point numbers to
whole numbers.
O↵set 0-12 by 60 to 60-72.

Data output Output 60-72 as MIDI nn, a pa-
rameter of pitch (C4-C5).

2.2 Data Modification Types
Sensor-based systems may incorporate data modification as
part of their software [14][15][16][17]. For example, Tanaka
and Donnarumma apply normalization, interpolation, and
filtering of MMG/EMG sensor data before mapping [18].
Other systems modularize data modification as a way to en-
able users [5][7]. Often, data modification modules remain
rigidly contained within their own systems [15][16]. Regard-
less, similarities abound. With special acknowledgment to
Dr. Je↵rey Stolet, whom the author first heard about the
following types, the author proposes Stolet’s five data mod-
ification types, which articulate the process of modifying a
one-dimensional digital data stream. The five types are:

1. Interpolation

2. Thin

3. O↵set

4. Smooth

5. Scale

The five data modification types may function at con-
trol or signal rate. Modification types may include non-
linear transform functions (e.g. interpolate, scale) and may
be used to generate event-based triggers (e.g. interpolate,
thin). The five data modification types are combinatorial,
and may be placed in varying orders to achieve both simple
and complex results, as will be shown below. Because other
data modification types may arise, these five types should
be viewed as a starting point for mapping research and tool
development.

2.2.1 Interpolation
Interpolation, broadly speaking, produces an estimated nu-
merical location based upon the dependence of surrounding
locations [19]. One may view interpolation as the generation
of new values (estimated numerical location) that sit be-
tween discrete points (surrounding locations) found within
a one-dimensional data stream.

Figure 3: The line between points represents a lin-
ear interpolation between discrete points over one
second time intervals.

2.2.2 Thin
Thin, similar to certain filters, “removes some component
or characteristic of a signal” [20]. Thinning data often uses
one of three functions: thin as a function of time (e.g.
poll/sample) [4], thin as a function of equalization (e.g. lin-
ear filters) [18], or thin as a function of thresholds (e.g.
hysteresis) [21].

2.2.3 Offset
O↵set modifies data through basic addition or subtraction.
While o↵set appears to be a simple modification, composers
frequently transpose (o↵set) pitch to develop material; one
common example is the musical sequence [22].

2.2.4 Smooth
Smooth algorithmically modifies data to maintain patterns
and to help reduce noise [23]. While smoothing algorithms
are operations found in FIR filters, which one may conceive
of as thinning, a di↵erent conceptual model and algorithms
necessitate a unique modification type [24].

2.2.5 Scale
Scale is a basic function of mathematical ratios: multipli-
cation and division. Variants of this function may be found
in existing sensor-based systems [16][17].

2.3 Data Modification Examples
To help outline the five data modification types, we may
look to existing systems. The examples below (Xth Sense,
simpleKinect, eMersion) display how data modification types
may be combinatorial.

Table 2: Xth Sense (Biophysical Instrument) [15]
Data input Audio signal
Data modification Low-pass EQ (thin)

Normalize between -1.0 and 1.0
(scale)

Data output Output to data extraction module

Table 3: simpleKinect (Kinect-to-OSC application)
[25]
Data input Joint vectors from a video matrix

signal
Data modification Reduce joint vector jitter over

three frames at 60 f.p.s. (smooth)
Data output Output joint vector as OSC mes-

sage

Table 4: eMersion (Wireless Performance Technol-
ogy) [16]
Data input Serial data signal
Data modification Reduce analog sensor noise

through averaging (smooth)
Convert data stream to 0-1 for
user mapping (scale)

Data output Output data (specified by user)

Given the widespread use of data modification, develop-
ing rapid prototyping tools for data modification helps serve
mapping projects and complex mapping problems.

3. JPB.MOD
jpb.mod is a Max 6 package created for rapid prototyp-
ing. Each module addresses one of the five data modifi-
cation types (interpolate, thin, o↵set, scale, smooth [itoss]).
jpb.mod objects handle the modification of a one dimen-
sional data stream functioning at control rate.

3.1 Max/MSP
In software, we may consider UI as comparable to rapid pro-
totyping a 3D product, one that puts “physical handles on
phantom models” [11]. Based upon the user interface (UI)
design tools and the popular support within computer music
and digital art fields, we chose to develop the jpb.mod tools
in Max/MSP, focusing upon modular design, accessibility,
a↵ordance, and constraints [26].

3.1.1 Max 6 Rapid Prototyping Example
An input module that comes standard with Max 6, de-
mosound.maxpat, serves as an example of a rapid prototyp-
ing tool (Figure 4). The module encapsulates various audio
generators within a single bpatcher object. While hiding
some functions under the hood, the GUI enables easy ac-
cess to device controls, and the module handles most audio
generation tasks within Max/MSP.

3.2 jpb.mod Rapid Prototyping Tools
jpb.mod modules take advantage of Max system strengths,
namely UI, scripting, and presets (pattr) in order to sup-
port di↵erent user behaviors, such as real time and scripting
use. The jpb.mod tools may be created either as bpatcher
objects or as Max abstractions (UI functions may still be
accessed by double clicking the abstraction). Each jpb.mod
object has a help file and help reference menu, and nearly
all jpb.mod functions o↵er a monitor window to visually re-

Figure 4: demosound.maxpat is an example of a
rapid prototyping tool developed by Cycling74.

port data streams. The description of each tool below will
further outline additional strengths.

3.2.1 Interpolate
jpb.mod.interpolate o↵ers two modes of interpolation: stream
and event. Stream enables the dynamic interpolation be-
tween streaming data points, and event enables the trigger-
ing of discrete interpolation events.

Figure 5: jpb.mod.interpolate event function

The jpb.mod.interpolate event function extends the Max
line object by providing more non-linear options, a standard
GUI, as well as pattr ready variables for saving and recalling
of presets.

The stream function extends the line object functional-
ity by handling interpolation of variable data streams. One
does not have to know the previous value in order to in-
terpolate between values. jpb.mod.interpolate handles the
interpolation dynamically. The stream function works best
with consistent control rates to maintain smooth interpola-
tion.

Figure 6: jpb.mod.interpolate stream function. Dis-
play shows dynamic interpolation of incoming
pseudo-random numbers (-1,1).

3.2.2 Thin
jpb.mod.thin removes data by three methods: Sample/Poll,
EQ (low pass, high pass), and Event (threshold triggers).

The EQ function filters data using simple high pass and
low pass filters, where cuto↵ is based upon a percentage of
the input range (Figure 7).

The event function thins data with thresholds (Figure
8). “min||max” triggers a 1 every time the high thresh-
old is past, and triggers a 0 every time the low threshold
is past. “min&&max” is a hysteresis model for triggering

Figure 7: jpb.mod.thin eq function, showing the high
pass filter.

Figure 8: jpb.mod.thin event function, showing the
hysteresis model.

events, where the maximum threshold triggers only after
the minimum has been reached.

3.2.3 Offset
jpb.mod.o↵set modifies a number by mathematical addition
and subtraction. While simple math problems are more
easily executed with basic Max objects, the design process
suggested easily selectable common o↵set equations as a
time saving benefit. Thus, the module includes ratio trans-
position, which parallels the perceptual model of musical
transposition as a function of o↵set.

3.2.4 Scale
jpb.mod.scale provides various methods for scaling input
data, including non-linear functions. jpb.mod.scale moves
beyond the Max scale object by o↵ering dynamic input
range, where high/low inputs values are automatically set
by the incoming data stream; single-click output range in-
version; four output clipping modes; and seven non-linear
functions, all of which the Max scale object does not o↵er.

Figure 9: jpb.mod.scale, showing 0-1 input to 0-127
output, with an exponential curve applied.

3.2.5 Smooth
jpb.mod.smooth provides two methods for smoothing incom-
ing data: step and window. Step averages data over the last
X data points. The window method simulates recursive-
smoothing techniques commonly found in DSP. The window
function takes the average of two data arrays, o↵set from

each other by Y steps, in order to provide a faster transient
response.

Figure 10: jpb.mod.smooth, showing step function.

4. CONCLUSIONS
The jpb.mod Max 6 package is a data modification toolkit,
built as a means to aid complex mapping development through
a rapid prototyping framework. Beginning first with the de-
sign need, “Why do I have to make so many connections in
order to make my idea work?” jpb.mod attempts to provide
a solution for creative play and research.

The jpb.mod library pushes a rapid prototyping frame-
work by compiling basic data modification tools within easy
patchable GUIs. While existing libraries do o↵er modular
design, few o↵er UI controls, help files, data monitors, and
quick-key access. The jpb.mod library has already been im-
plemented in eMersion software [27], and used in composing
Triangulation [28].

This paper presents topics that may elicit further dis-
course. First, outlining data modification fundamentals
provides a platform for addressing mapping problems while
attempting to o↵er language for interdisciplinary collabo-
ration. Second, rapid prototyping (via design thinking)
outlines a process toward discovering workable solutions
to mapping problems. Third, the development of a Max
6 package o↵ers a rapid prototyping toolkit as proof-of-
concept.

Further study into data analysis, data extraction, multi-
dimensional data streammodification, and input-output map-
ping problems would be relevant for creating additional
rapid prototyping tools to aid complex mapping projects.

The jpb.mod library, along with examples, may be down-
loaded online at: http://jpbellona.com/work/jpb-mod

5. REFERENCES
[1] F. Bevilacqua, R. Muller, and N. Schnell. MnM: a

Max/MSP mapping toolbox. In NIME05 Conference
Proceedings, pages 85–88. New Interfaces for Musical
Expression, 2005.

[2] A. Hunt and M. M. Wanderley. Mapping performer
parameters to synthesis engines. Organised Sound,
7(2):97–108, 2002.

[3] E. R. Miranda. New Digital Musical Instruments:
Control and Interaction Beyond the Keyboard. A-R
Editions, Middletone, WI, 2006.

[4] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton.
Real-time corpus-based concatenative synthesis with

CataRT. In Proc. of the Int. Conf. on Digital Audio
E↵ects (DAFx-06), pages 279–282, 2006.

[5] T. Place and T. Lossius. Jamoma: A modular
standard for structuring patches in Max. In ICMC05
Conference Proceedings. International Computer
Music Conference, 2006.

[6] M. Parker. mp.assignment, a Max input object.
http://www.tinpark.com/2008/12/mpassignment/,
2009. [Online; accessed 24-Apr-2014].

[7] H. C. Steiner. Towards a catalog and software library
of mapping methods. In NIME06 Conference
Proceedings, pages 106–109. New Interfaces for
Musical Expression, 2006.

[8] S. B. Pearce and S. S. Moran. Rapid prototyping in
the development of instrumentation for minimal
access surgery - a case study. In First National
Conference on Rapid Prototyping and Tooling
Research, pages 29–40, London, England, 1995.
Mechanical Engineering Publications.

[9] T. Kelley and D. Kelley. Creative confidence:
unleashing the creative potential within us all. Crown,
New York, NY, 1st edition, 2013.

[10] A. Tanaka. Mapping out instruments, a↵ordances,
and mobiles. In NIME10 Conference Proceedings,
pages 88–93. New Interfaces for Musical Expression,
2010.

[11] J. Ryan. Some remarks on musical instrument design
at STEIM. Contemporary Music Review, 6(1):3–17,
1991.

[12] D. J. Levitin, S. McAdams, and R. L. Adams. Control
parameters for musical instruments: a foundation for
new mappings of gesture to sound. Organised Sound,
7(2):171–189, 2002.

[13] C. Goudeseune. Interpolated mappings for musical
instruments. Organised Sound, 7(2):85–96, 2002.

[14] B. Bongers and Sensorband. An Interview with
Sensorband. Computer Music Journal, 22(1):13–24,
1998.

[15] M. Donnarumma. Xth Sense: a study of muscle
sounds for an experimental paradigm of musical
performance. In NIME11 Conference Proceedings.

New Interfaces for Musical Expression, 2011.
[16] C. Udell and J. P. Sain. eMersion: Sensor-controlled

Electronic Music Modules and Digital Data
Workstation. In NIME14 Conference Proceedings.
New Interfaces for Musical Expression, 2014.

[17] W. Brent. DILib: Control Data Parsing for Digital
Musical Instrument Design. In Proc. of the 4th Pure
Data Convention, 2011.

[18] M. Donnarumma, B. Caramiaux, and A. Tanaka.
Muscular Interactions. In NIME13 Conference
Proceedings. New Interfaces for Musical Expression,
2013.

[19] D. Watson. Contouring: A Guide to the Analysis and
Display of Spatial Data. Pergamon, New York, NY,
1st edition, 1992.

[20] J. H. McClellan, R. W. Schafer, and M. A. Yoder.
Signal Processing First. Prentice Hall, Upper Saddle
River, NJ, 1st edition, 2003.

[21] J. Malloch. Digital Orchestra Toolbox. http://
idmil.org/software/digital_orchestra_toolbox,
2006. [Online; accessed 29-Apr-2014].

[22] B. Benward and M. N. Saker. Music in theory and
practice. McGraw-Hill, Boston, MA, 2003.

[23] J. S. Simono↵. Smoothing Methods in Statistics.
Springer, New York, NY, corrected edition edition,
1998.

[24] G. A. Einicke. Smoothing, Filtering and
Prediction-Estimating the past, present and future.
InTech, New York, NY, 2012.

[25] J. Bellona. Kinect Applications (simpleKinect,
Kincect-Via-). http://jpbellona.com/kinect, 2012.
[Online; accessed 01-Jan-2015].

[26] W. Lidwell, K. Holden, and J. Butler. Universal
Principles of Design. Rockport Publishers,
Gloucester, MA, 2003.

[27] C. Udell. eMersion Software. http://www.
unleashemotion.com/store/emotion-software,
2010-2014. [Online; accessed 14-Dec-2014].

[28] J. Bellona. Triangulation.
http://jpbellona.com/music/, 2014. [Online;
accessed 01-Jan-2015].

