
RUNNING EXPRESSIONS:
PHYSIOLOGICAL MONITORS AND MOTION SENSORS MAPPED FOR MUSICAL

PERFORMANCE

By

JON P. BELLONA

A TERMINAL CREATIVE PROJECT

Presented to the University of Oregon School of Music and Department of Dance

in partial fulfillment of the requirements

for the degree of

Master of Music in Intermedia Music Technology

June 2011

Running Expressions is a terminal creative project prepared by Jon P. Bellona in partial

fulfillment of the requirements for the Master of Music in Intermedia Music Technology degree

in the School of Music and Department of Dance. This terminal creative project has been

approved and accepted by:

––

Jeffrey Stolet, Chair of the Examining Committee

––––––––––––––––––––––––––––––––––––––

Date

Committee in Charge: Jeffrey Stolet, Chair

 Molly Barth

 Robert Ponto

ii

© 2011 Jon Bellona

iii

ACKNOWLEDGEMENTS

I would like to extend my gratitude to both my parents, Steve and Kristine Bellona, for their love

and support, and to say thank you to my brother, David Bellona, for his creative insights, design

critiques, and aberrant resources that have found their way into my work. I would also like to

thank Professor Jeffrey Stolet, for without his knowledge and endearing support throughout my

graduate studies at the University of Oregon, this project simply would not have been possible.

iv

TABLE OF CONTENTS

INTRODUCTION	
 1

PART I. UNDERLYING ARCHITECTURE (SIGNAL FLOW)	
 3

1. Musical Hardware Connections	
 3

2. Software Connections	
 4

3. Video Connections	
 5

PART II. HARDWARE	
 6

4. T-31 Coded™ Polar Heart Rate Monitor Transmitter (HRM)	
 6

5. Polar Heart Rate Monitor Interface (HRMI)	
 6

6. Nintendo Wiimotes	
 7

7. ADXL322 Dual-Axis Accelerometer	
 7

8. JeeNode wireless Tx/Rx	
 8

PART III. SOFTWARE	
 10

9. Processing	
 10

10. OSCulator	
 12

11. PacaConnect	
 17

12. Max/MSP/Jitter	
 18

12.a. Data Hub	
 18

12.a.i. Heart Rate Monitor from Processing	
 18

12.a.ii. Nintendo Wiimotes via OSC messages from OSCulator	
 19

12.a.iii. JeeNode and Accelerometers from Serial Bus	
 20

12.b. Musical Parameter Controller	
 23

12.c. Video Projection Controller	
 23

13. Kyma	
 28

v

PART IV. COMPOSITION AND PERFORMANCE STRUCTURE	
 40

14. Section I: Exposition	
 41

14.a. Heart Exposition	
 41

14.b. Feet Exposition	
 41

15. Section II: Development	
 42

15.a. Running on Dillard (trombones, strings, piano)	
 42

15.b. Running on Spencer’s Butte (Climax)	
 42

16. Section III: Recapitulation/Coda	
 43

APPENDIX	
 44

A.1. Controller_Kyma33_End4b.maxpat Figure Documentation	
 44

A.1.a. Exposition Sequencer	
 47

A.1.b. JeeNode Accelerometers	
 50

A.1.c. Heart Rate Monitor	
 61

A.1.d. Control Window	
 64

A.1.e. MIDI	
 67

A.1.f. Video Control	
 68

A.1.g. Wiimote Master	
 78

A.1.h. Wiimote 1	
 81

A.1.i. Wiimote 2	
 86

A.2. VPT_4.1b5_RunningExpressions.maxpat Figure Documentation	
 96

A.2.a. Videoplane Module: Running	
 102

A.2.b. Videoplane Module: Heart Rate	
 106

A.2.c. Videoplane Module: LCD	
 109

A.2.d. Preset Module	
 109

A.2.e. Movie Source Module: Running #1	
 114

vi

A.2.f. Movie Source Module: Running #2	
 121

A.2.g. Movie Source Module: Heart Rate LCD display	
 123

A.2.h. Movie Source Module: Heartbeat Movie	
 124

A.2.i. Movie Source Module: Distance LCD display	
 126

A.2.j. Cue List Mixer Module	
 126

A.2.k. Mixer Module: Running	
 127

A.2.l. Mixer Module: Heart	
 128

A.3. Master’s Project Proposal	
 129

A.4. Graphical Icon Legend	
 132

A.5. Resource URLs	
 135

A.6. Included DVD Contents	
 135

vii

TABLE OF FIGURES

Figure 1.1. Hardware Connections Flowchart 3

Figure 2.1. Software Connections Flowchart 4

Figure 3.1. Video Connections Flowchart 5

Figure 8.1. Accelerometer Spike Fluctuations 9

Figure 9.1. Processing optimization (before 100ms interval added) 11

Figure 9.2. Processing optimization (after 100ms interval added) 11

Figure 9.3. Additional Processing code, limits time between data requests 12

Figure 10.1. OSCulator Signal Flowchart 13

Figure 10.2. OSC messages from Max/MSP, routed to Kyma 14

Figure 10.3. OSC messages from Max/MSP, routed to Kyma 15

 Wiimote messages, routed to Max/MSP

Figure 10.4. OSC messages from Wiimotes, routed to Max/MSP 16

Figure 11.1. PacaConnect Signal Flowchart 17

Figure 12.a.1. MaxLink external object 19

Figure 12.a.2. OSC-route external object 20

Figure 12.a.3. JeeNode Tx and Accelerometer Pouch 21

Figure 12.a.4. Data stream table of the right leg accelerometer 22

Figure 12.c.1. Videoplane cleanup documentation 24

 Original patch in Presentation mode.

Figure 12.c.2. Videoplane cleanup documentation 25

 Original patch in Editing mode.

Figure 12.c.3. Videoplane cleanup documentation 25

 Clean patch in Editing mode.

Figure 12.c.4. Movie source cleanup documentation 26

 Original patch in Presentation mode.

Figure 12.c.5. Movie source cleanup documentation 26

 Original patch in Editing mode.

viii

Figure 12.c.6. Movie source cleanup documentation 27

 Clean running movie source patch in Editing mode.

Figure 12.c.7. Movie source cleanup documentation 28

 Clean LCD movie source patch in Editing mode.

Figure 13.1. Kyma TL, with WaitUntil Sound track and MIDI note track highlighted 29

Figure 13.2. WaitUntil Sound Object 29

Figure 13.3. MIDI Output Pitch 30

Figure 13.4. Heartbeat Sound 30

Figure 13.5. Heartbeat Exposition Main Sound, Vocoder with Delays 31

Figure 13.6. Heartbeat Exposition Sequencer 32

Figure 13.7. Heartbeat Low Rumble 32

Figure 13.8. Road Environment Ambient Sound 33

Figure 13.9. Selectable Foot Sounds 33

Figure 13.10. Feet Exposition Waltz 34

Figure 13.11. Selectable Children Sounds 34

Figure 13.12. Development Section for Trombones, Piano, and Strings 35

Figure 13.13. Aorta Sound Transition 35

Figure 13.14. Development Section Climax, part 1 36

Figure 13.15. Development Section Climax, part 2 36

Figure 13.16. Crashing Forests Sounds, Randomly Selected 37

Figure 13.17. Final Piano Chord 37

Figure 13.18. Wind Environment Sound 38

Figure 13.19. Exposition Sequencer Revisited 38

Figure 13.20. Exposition Heartbeat Vocoder Revisited 39

Figure 13.21. Kyma TL, with Sections Labeled 40

Figure A.1.1. Controller_Kyma33_End4b.maxpat Main Patch Window 44

Figure A.1.2. Performance Setup Order Patch Window 45

Figure A.1.3. Color Legend for Master Controller Max Patch 46

Figure A.1.a.1. Exposition Sequencer Patch Window 47

ix

Figure A.1.a.2. Sequencer Control Patcher 48

Figure A.1.a.3. Wiimote 1 Controls Presets Patcher 48

Figure A.1.a.4. Sequencer Tempo Control Patcher 49

Figure A.1.a.5. Tap Tempo Sequencer Control Patcher 49

Figure A.1.b.1. JeeNode Patch Window, in Presentation mode 50

Figure A.1.b.2. Serial Data Input Module 51

Figure A.1.b.3. Serial Port Formatting Menu Patcher 51

Figure A.1.b.4. Serial Port Formatting Message Patcher 52

Figure A.1.b.5. Serial Channel Data Display Module 52

Figure A.1.b.6. Accelerometer Threshold Counter Patcher 53

Figure A.1.b.7. Foot Distance Calculator Patcher 54

Figure A.1.b.8. Master Foot Distance Display Module 1 54

Figure A.1.b.9. Master Feet Distance Calculator per Section Patcher, video control 55

Figure A.1.b.10. Master Accelerometer Control and Routing Module 2 55

Figure A.1.b.11. Feet Accelerometer Tempo Control Patcher 56

Figure A.1.b.12. Master Feet Counter Calculator Patcher, controls video 57

Figure A.1.b.13. Master Feet Distance Calculator Patcher, lcd display 57

Figure A.1.b.14. Accelerometer Sends to Kyma Patcher part 1 58

Figure A.1.b.15. Accelerometer Sends to Kyma Patcher part 2 58

Figure A.1.b.16. Master Accelerometer Control Module 3 59

Figure A.1.b.17. Master Feet Counter Control Patcher 59

Figure A.1.b.18. Master Feet Counter Test Patcher 60

Figure A.1.c.1. Heart Rate Routing Patch Window 61

Figure A.1.c.2. Heart Rate Controls Movie Playback Patcher 62

Figure A.1.c.3. Heart Rate Controls Heartbeat/Aorta Audio Playback Patcher 62

Figure A.1.c.4. Heart Rate Controls Switch Gate Patcher 63

Figure A.1.c.5. Master Heartbeat Audio Volume Control Patcher 63

Figure A.1.d.1. Performance Control Patch Window, in Presentation mode 64

Figure A.1.d.2. Performance Control Patch Window, in Patcher mode 65

x

Figure A.1.d.3. Performance Control Timer as Counter Patcher 66

Figure A.1.d.4. Performance Control Timer as Time Patcher 66

Figure A.1.e.1. MIDI Controls Patch Window 67

Figure A.1.f.1. Video Control Patch Window, overview of Window layout 68

Figure A.1.f.2. Video Control MIDI routing, part 1 68

Figure A.1.f.3. Video Control MIDI routing, part 2 69

Figure A.1.f.4. Video Section Command Descriptions Patcher 70

Figure A.1.f.5. QuickTime Movie ‘qmetro’ Toggle Module 71

Figure A.1.f.6. QuickTime Movie #1 ‘qmetro’ Toggle Patcher 71

Figure A.1.f.7. QuickTime Movie #2 ‘qmetro’ Toggle Patcher 71

Figure A.1.f.8. QuickTime Movie #4 ‘qmetro’ Toggle Patcher 72

Figure A.1.f.9. QuickTime Movie #5 ‘qmetro’ Toggle Patcher 72

Figure A.1.f.10. QuickTime Movie #6 ‘qmetro’ Toggle Patcher 72

Figure A.1.f.11. QuickTime Frame Rate Multiplier Control Module 73

Figure A.1.f.12. QuickTime Movie #1 Frame Rate Multiplier Control Patcher 73

Figure A.1.f.13. QuickTime Movie #2 Frame Rate Multiplier Control Patcher 73

Figure A.1.f.14. Performance Control Window Comment Field Module 73

Figure A.1.f.15. QuickTime Movie Selection Module 74

Figure A.1.f.16. QuickTime Movie #1 Selection Patcher 74

Figure A.1.f.17. QuickTime Movie #2 Selection Patcher 74

Figure A.1.f.18. QuickTime Movie ‘srcrect’ Pixel Jitter Toggle Module 75

Figure A.1.f.19. QuickTime Movie Fade Control Module 75

Figure A.1.f.20. QuickTime Movie Main Mixer Fade Control Patcher 75

Figure A.1.f.21. QuickTime Movie Running Movie Fade Control Patcher 76

Figure A.1.f.22. QuickTime Movie Heartbeat Movie Mixer Fade Control Patcher 76

Figure A.1.f.23. QuickTime Movie Heartbeat Movie Fade Control Patcher 77

Figure A.1.f.24. LCD Display Fade Control Patcher 77

Figure A.1.f.25. Feet Accelerometer Section Distance Counter Reset Module 77

Figure A.1.f.26. Miscellaneous QuickTime Movie Control Module 78

xi

Figure A.1.f.27. Master Video Control Switch Module 78

Figure A.1.g.1. Wiimote Master Control Patch Window 78

Figure A.1.g.2. All-Mute Wiimote Master Control Module 79

Figure A.1.g.3. Exposition Fade-Out Wiimote Master Control Module 79

Figure A.1.g.4. Final Piano Chord Wiimote Master Control Module 80

Figure A.1.g.5. Butte Pan Video Fade-In Patcher 80

Figure A.1.h.1. Wiimote 1 Control Patch Window, overview of Window layout 81

Figure A.1.h.2. Wiimote 1 Heart Rate Monitor Exposition Control Module 81

Figure A.1.h.3. Wiimote 1 Feet Exposition Control Module 82

Figure A.1.h.4. Environment Sound Select Patcher, in Feet Exposition 82

Figure A.1.h.5. Feet Sound Mute Patcher, in Feet Exposition 83

Figure A.1.h.6. Wiimote 1 Development Section Control Module, part 1 83

Figure A.1.h.7. Wiimote 1 Development Section Control Module, part 2 84

Figure A.1.h.8. Wiimote 1 Development Section Control Module, part 3 84

Figure A.1.h.9. String Mute Patcher 84

Figure A.1.h.10. Panning of Trombones Control Patcher 85

Figure A.1.h.11. String Harmony Pitch Selection Patcher 85

Figure A.1.h.12. Wiimote 1 Development/Climax Section Control Module 86

Figure A.1.i.1. Wiimote 2 Control Patch Window, overview of Window layout 86

Figure A.1.i.2. Wiimote 2 Heart Rate Monitor Exposition Control Module 87

Figure A.1.i.3. Filter Control Presets Patcher 87

Figure A.1.i.4. Filter Preset Selection Patcher 88

Figure A.1.i.5. Interpolation Between Presets Patcher 88

Figure A.1.i.6. Time Constant Parameter Interpolation Patcher 89

Figure A.1.i.7. Side Level Parameter Interpolation Patcher 89

Figure A.1.i.8. Bandwidth Parameter Interpolation Patcher 90

Figure A.1.i.9. Wiimote 2 Feet Exposition Control Module 90

Figure A.1.i.10. Children Audio File Selection Patcher 91

Figure A.1.i.11. Road Ambience Sound Playback Rate Interpolation Patcher 91

xii

Figure A.1.i.12. Wiimote 2 Development Section Control Module 92

Figure A.1.i.13. Panning of Trombones Control Patcher 92

Figure A.1.i.14. Wiimote 2 Development/Climax Section Control Module, part 1 93

Figure A.1.i.15. Wiimote 2 Development/Climax Section Control Module, part 2 93

Figure A.1.i.16. Trumpet Time Index Selection Patcher 94

Figure A.1.i.17. Trumpet Time Index Interpolation Patcher 94

Figure A.1.i.18. Breath Rate Calculator Selection Patcher 95

Figure A.1.i.19. Breath Rate Interpolation Patcher 95

Figure A.2.1. VPT_4.1b5_RunningExpressions.maxpat Main Patch Window 96

Figure A.2.2. VPT Main Patch Window, in Patcher mode, part 1 97

Figure A.2.3. VPT Main Patch Window, in Patcher mode, part 2 98

Figure A.2.4. VPT Keyboard Shortcuts 98

Figure A.2.5. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 1 99

Figure A.2.6. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 2 100

Figure A.2.7. Custom Coordinates Control Patcher 101

Figure A.2.8. Custom Coordinates Input Patcher 101

Figure A.2.9. Conditional Statement Custom Coordinates Patcher 102

Figure A.2.a.1. Videoplane Running, in Presentation mode 102

Figure A.2.a.2. Videoplane Running Patch Window, overview of Window layout 103

Figure A.2.a.3. Videoplane Position Module 103

Figure A.2.a.4. Videoplane Color Swatch Module 104

Figure A.2.a.5. Videoplane Color Masks Patcher 104

Figure A.2.a.6. Videoplane ‘jit.gl.render’ Control Module 105

Figure A.2.a.7. Videoplane Positioning Control Module 105

Figure A.2.a.8. Videoplane Movie Masks Module 106

Figure A.2.b.1. Videoplane Heart Rate, in Presentation mode 106

Figure A.2.b.2. Videoplane Heart Rate, Position Control Module 106

Figure A.2.b.3. Videoplane Heart Rate, ‘jit.gl.render’ Control Module 107

Figure A.2.b.4. Videoplane 3D Positioning Control Module 108

xiii

Figure A.2.b.5. Videoplane Custom Corner Positioning Control Module 108

Figure A.2.c.1. Videoplane LCD, in Presentation mode 109

Figure A.2.d.1. Preset Module, in Presentation mode 109

Figure A.2.d.2. Preset Module, in Patcher mode, part 1 110

Figure A.2.d.3. Preset Module, in Patcher mode, part 2 111

Figure A.2.d.4. Preset Module Controls Patcher 112

Figure A.2.d.5. Preset Module Recall Patcher 113

Figure A.2.d.6. Preset Module Data Confirmation Patcher 113

Figure A.2.e.1. Movie Source Running Patch Window, in Presentation mode 114

Figure A.2.e.2. Movie Source Running Patch Window, in Patcher mode 114

Figure A.2.e.3. Movie Source Select Module 115

Figure A.2.e.4. Movie Source External Select Control Module 115

Figure A.2.e.5. Movie Source Video Control Variables Module 116

Figure A.2.e.6. Movie Source Variables Assignment Patcher 116

Figure A.2.e.7. Movie Source Video Position Interpolation Calculator Patcher 117

Figure A.2.e.8. Movie Source Position Interpolation Timer Patcher 118

Figure A.2.e.9. Movie Control Module 118

Figure A.2.e.10. Interpolation for ‘srcrect’ X-Axis Jitter Patcher 119

Figure A.2.e.11. Interpolation for ‘srcrect’ Y-Axis Jitter Patcher 120

Figure A.2.f.1. Movie Source Running #2 Patch Window, in Patcher mode 121

Figure A.2.f.2. Wiimote Controls Panning Video Patcher 122

Figure A.2.f.3. Wiimote 1 Controls Kyma 8-channel Panning Patcher 122

Figure A.2.g.1. Movie Source Heart Rate LCD Display, in Patcher mode 123

Figure A.2.h.1. Movie Source Heartbeat Patch Window, in Presentation Mode 124

Figure A.2.h.2. Movie Source Heartbeat Patch Window, in Patcher Mode 124

Figure A.2.h.3. Movie Select Heartbeat Module 125

Figure A.2.h.4. Movie Heartbeat Video Control Variables Module 125

Figure A.2.h.5. Movie Control Heartbeat Module 125

Figure A.2.i.1. Movie Source LCD Patch Window 126

xiv

Figure A.2.j.1. Cue List Mixer Patch Window, in Presentation mode 126

Figure A.2.j.2. Cue List Mixer Patch Window, in Patcher mode 127

Figure A.2.k.1. Heartbeat Movie Mixer Patch Window 127

Figure A.2.l.1. Running Movie Mixer Patch Window 128

Figure A.4.1. Hardware icons 132

Figure A.4.2. Connection Standards and Protocols icons 133

Figure A.4.3. Software icons 134

xv

INTRODUCTION

 Running Expressions is a fusion of my two passions, electronic music and running. The

result, a live electronic performance work, not only challenged my technical and compositional

abilities, but also kindled my interests in human performance within electronic music. Running

acted as the inspirational seed for both the music and the musical journey, and by taking bio-

signal, or physiological, information from the physical action of running, I facilitated the body in

the creation and the control of music. Running then also served as a performance and a

functional control over musical parameters.

 Not only did I choose the human body as a way to generate data streams for the creation

of music, but I necessitated the human performer inside an electronic work. By making the music

rely on physiological data, the human became integral to the creation of the music. The music

cannot exist without the human’s input, and by so doing, I inject the human back into electronic

music. I chose this dependent relationship for two reasons.

 First, bringing the human performer back into electronic music helps shift electronic

music closer to the music traditions of our past. Throughout the history of man, music has been

created through the transference of acoustic energy enacted by humans. There is a direct

relationship between sound and musical action. Because the energy for live electronic music is

created through transductions recorded as digital data (0s and 1s), there is not always a direct

relationship between sound and musical action. This indirect correlation between sound and

action should not mean that the human performer’s presence is lost inside the technology. For in

the performance hall, I firmly believe there are benefits to having a human performance of

electronic music– the performer serves as an accessible gateway to the music, and can help

engage the audience– even if these particular performer benefits stem directly from the

perceptions of acoustic music and concert traditions.

1

 Second, there are fewer works for live electronic music utilizing alternative controllers

than electro-acoustic and fixed-media compositions.1 Ever since the first musique concrète

concerts of the 1950s and the introduction of computer music in the late 1950s, a tradition has

evolved for fixed-media compositions and acoustic music with electronic accompaniment.

Composers in the last sixty years have written fixed-media works, acousmatic music, and works

for acoustic instruments with live electronics, but have largely ignored the genre of electronic

music for real-time performance using recent technologies, due in part to the limitations of

computer processing power. I chose to write a real-time electronic performance using alternative

controllers because I felt, and still feel, that it is important to engage electronic works involving

human performers, while, at the same time, to explore and perhaps help develop musical

traditions for live electronic music.

 Running Expressions uses three different alternative controllers– a heart-rate monitor, two

Nintendo Wiimotes, and two dual-axis accelerometers. These three controllers are mapped to

control musical parameters and to trigger sound events in real time. The work demands a human

performer because the controllers require physiological data and motion for actualization. I

explored the links of human motion and physiological data to sound and musical performance

throughout the compositional process this past year.

 Running Expressions also implements various software components and communication

protocols, learned during my studies at the University of Oregon. In this documentation I will

give a brief overview of the signal flow of all hardware and software components used in

Running Expressions. Next, I will explain each component in detail, beginning with the various

hardware components, followed by an in-depth review of each software component. Lastly, I will

discuss the compositional and performance structure. The main topics (signal flow, hardware,

software, composition) cohesively detail the development and the execution of Running

Expressions. Detailed figures, including explanations, will appear throughout.

2

1 For example, examining the works realized at CCRMA 1968–1992, there are 135 fixed-media compositions, 66
electro-acoustic compositions (acoustic instruments with tape), and 22 live-electronic works. These 22 works
included compositions which incorporate either some type of electronic instrument or live-electronic manipulation
of acoustically generated sounds. Of these twenty-two works, only seven compositions were written solely for live-
electronics. The first of these seven compositions did not appear until 1988.

PART I. UNDERLYING ARCHITECTURE (SIGNAL FLOW) 2

1. Musical Hardware Connections

 Running Expressions was written for one Polar Heart-Rate Monitor, two Nintendo

Wiimote controllers, and two ADXL322 Dual-Axis accelerometers. The Heart-Rate Monitor

attaches to the performer’s chest, the Nintendo Wiis to the wrists, and each accelerometer to one

leg, just below the knee. The Polar Heart-Rate Monitor sends information via a magnetic field to

a Polar Heart Rate Monitor Interface, which sends its data to the computer via a standard USB

cable. The Nintendo Wiimotes communicate to the computer via Bluetooth, and the dual-axis

accelerometers via a high frequency radio signal using JeeNode Tx/Rx microcontrollers.

Figure 1.1. Hardware Connections Flowchart

3

2 For a complete legend of all graphic icons used in the signal flow diagrams, please see the Appendix. Figures A.4.1
– A.4.3.

2. Software Connections

 Using the computer, I poll each data stream with three different programs. Processing

polls the heart-rate monitor interface for heart rate information, OSCulator polls the Nintendo

Wiis for button and accelerometer information, and Max/MSP/Jitter polls the JeeNode Rx USB

bub for accelerometer data of the X and Y axes. All sounds are generated by Kyma, but

controlled in real time with MIDI and OSC messages sent from Max/MSP/Jitter. In this way,

Max/MSP/Jitter serves as the master control software, and Kyma as the sound synthesis

software/hardware engine. All other software components serve to bridge Kyma and Max/MSP/

Jitter together, functioning as either direct communication links (PacaConnect, OSCulator) or

data routers to/from Max/MSP and Kyma (OSCulator, Processing).

Figure 2.1. Software Connections Flowchart, includes connections to external devices.

4

3. Video Connections

 Max/MSP/Jitter also controls the playback of video. Max/MSP/Jitter projects four

different video planes at any given time, displaying video and LCD information in a 3D

projection environment. Kyma sends a total of fourteen MIDI note messages to Max/MSP/Jitter

to trigger the various video changes throughout the piece.

Figure 3.1. Video Connections Flowchart. Compiled Kyma Timeline on Paca(rana) sends MIDI messages
via PacaConnect that serve as video controls within Max/MSP/Jitter.

5

PART II. HARDWARE 3

 To actuate the work, “Running Expressions” uses several pieces of hardware. Each

hardware device discussed below was selected after research in the fields of wireless network

communication, physical sensors, and data protocols. There were different reasons for selecting

each device, and I weigh the positive and negatives of each decision.

4. T-31 Coded™ Polar Heart Rate Monitor Transmitter (HRM)

 After failed attempts to find a working a solution using the ANT+ wireless protocol with

Garmin heart rate monitor and foot pod products, I turned to the largest and oldest manufacturer

of heart rate monitors, Polar. The T-31 Coded™ Heart Rate Transmitter measures the

electrocardiogram (ECG), which is the electrical signal produced by a heart in motion. Two

electrodes must be wet and attached to the front part of the chest in order to transmit any signal,

and the T-31 HRM uses a magnetic field to transmit data. I chose this particular heart rate

monitor because I found a compatible computer interface. The transmitter and interface led me to

a simple and stable solution after months of coding problems with the ANT+ protocol. The

limitation of the HRM is the susceptibility to other electromagnetic signals. While the T-31 uses

a Polar-coded signal in order to minimize interference, the physical range of the device must be

limited in order to ensure a stable connection. This limited range was ultimately determined by

the heart rate monitor interface.

5. Polar Heart Rate Monitor Interface (HRMI)

 SparkFun, an online retailer of personal electronic projects, distributes an interface for the

Polar T-31 Transmitter. Designed by DanJulioDesigns4, the Polar Heart Rate Monitor Interface

converts ECG signals sent by the Polar Heart Rate Monitor into ASCII numbers (0-255). These

ASCII numbers are separated by spaces, terminate with a carriage return, and sent serially, via

6

3 Pictures of representative hardware icons may be found in the Appendix. Figure A.4.1.

4 Dan Julio Designs, “Sparkfun HRMI,” http://danjuliodesigns.com/sparkfun/sparkfun.html (accessed April 21,
2011).

http://danjuliodesigns.com/sparkfun/sparkfun.html
http://danjuliodesigns.com/sparkfun/sparkfun.html

USB, to the host computer. I use a Processing sketch to send commands to the HRMI and receive

encoded heart rate information from the HRMI (Chapter 9). The main limitation of the HRMI

device is the physical range of signal transfer between the HRM and the HRMI. Distances cannot

exceed 80cm to 100cm (31.5 to 39.3 inches) before the signal begins to drop. Dropping of the

ECG signal causes irregularity in the heartbeat information received by the HRMI, which I found

impacts the composition control mappings, and due to these mappings, can cause audible

changes in the music.

6. Nintendo Wiimotes

 The Nintendo Wii Remote (or Wiimote) is a wireless game controller that features

embedded accelerometers, gyroscope, infrared light, and button controls. The controller sends

data via Bluetooth. Bluetooth is a wireless technology standard for exchanging data over short

distances. I accessed the Wiimote data through OSCulator (Chapter 10), which incorporates a

Wiimote Bluetooth setup panel as part of its software. Because of the Wiimote’s wireless

capabilities, amount of controls, ease of setup, and stable connection, I selected the Wiimote to

serve as the composition’s master controller, capable of triggering sound events, music section

changes, and controlling musical parameters in real time. For Running Expressions, I only

utilized the Wiimote’s accelerometer and button controls. I did not use the infrared light, the Wii

Motion Plus (a Tuning fork gyroscope that accents the accelerometer data), or any other Wiimote

accessories, like the Wii Nunchuk.

7. ADXL322 Dual-Axis Accelerometer

 Due to complications with the ANT+ wireless protocol, I was also unable to use the

Garmin Foot Pod, a device for tracking a runner’s cadence, speed and distance. Without this set

of information, I would have been unable to capture and transfer the physical act of running into

performance controls. Therefore, I needed a solution to track the running and walking motion of

legs.

 I found a solution using the ADXL322 Dual-Axis Accelerometer. The accelerometer

measures dynamic acceleration resulting from motion, shock, or vibration and outputs voltage

7

signals. With an accelerometer, I would be able to generate data based upon the motion of the

legs. In preparation of the final performance, I sought after my ideal performance situation– a

wireless connection to the accelerometers attached to the legs. Cables connected to the legs

would look bulky and potentially create an unwanted hazard to the performer and equipment. In

order to minimize the hazards, I sought out another unique wireless data transfer method, radio

signals.

8. JeeNode wireless Tx/Rx

 JeeNode is a small wireless microcontroller board that communicates through a RFM12B

radio module at either 433, 868, or 915 MHz. The JeeNode Tx/Rx boards served as the wireless

solution to connecting the accelerometers to the body (one accelerometer is attached to each leg,

just below the knee), and freed the performer of attached cables during performance. The

JeeNode Tx (transmitter) collects information off the analog pins of the dual-axis accelerometer,

before sending the information over a specific radio frequency.5 The JeeNode Rx (receiver)

converts any received JeeNode Tx message into an 8-bit serial packet, which is then sent over a

universal serial bus (USB) into the host computer6. The information is collected by Max/MSP/

Jitter for data mapping (Chapter 12).

 I discovered both the ADXL322 Dual-Axis Accelerometer and the JeeNode Tx/Rx boards

after taking a University of Oregon workshop with Brown Ph.D. candidate in electronic music,

Kevin Patton. Because the hardware now belongs to the Intermedia Music Technology

department, I was able to borrow the equipment for use in Running Expressions.7

 The main limitation to the JeeNode Tx/Rx are the fluctuations in the incoming data

streams. While I will discuss the data in further detail in Max/MSP/Jitter (Chapter 12), some of

the data fluctuations should be noted here. Leaving the device on and alone for two hours

connected to the computer resulted in forty seven spike occurrences in the incoming data stream

8

5 The JeeNodes used in Running Expressions implemented a 915MHz radio frequency.

6 The information sent to the computer travels at a 38400 baud rate.

7 Included in the DVD is my own generic Max/MSP template patch for use with the ADXL322 dual-axis
accelerometers and JeeNode Tx/Rx devices.

(Figure 8.1).8 Further investigations revealed discrepancies in data between running and walking.

The result were inconsistent triggers while running, which became apparent while mapping the

accelerometer triggers. One example was the choppiness of video playback.

Figure 8.1. Accelerometer Spike Fluctuations. JeeNode data packets received inside Max/MSP while the
accelerometer was attached to the right leg. The accelerometer is in resting position as I am seated with
no quick movements. Data acquired on February 9, 2011.

9

8 The normal data range of the JeeNode packets was between 0-255 with normal resting values incoming between a
range of ten, usually 130-140, or 117-126. The forty-seven spikes in value were recorded for incoming values
exceeding 200, a value spike of 60+ in value. Fluctuations less than ten were not recorded. Figure 8.1.

PART III. SOFTWARE 9

9. Processing

 Processing acts as the master program that controls the HRMI microprocessor. Processing

sends commands to the HRMI every 100ms to retrieve heart rate information stored in the

microprocessor buffer. These data packets are sent in the form of ASCII values, and are

comprised of a status byte followed by heart rate information and a carriage return. Once

Processing receives any data packet, the program displays the current heart rate value in a small

compiler window and simultaneously sends the heart rate value over to Max/MSP/Jitter. The

cross-software communication is achieved through an external java library called MaxLink.10

 During the compositional process, I discovered that my Processing sketch placed an

inordinate load on the CPU of the computer. Normally, Processing sent commands to the HRMI

upon every draw() function, a repetition occurring at the speed of the computer’s processor.

Because I didn’t need a continuous update of the heart rate information, I placed a speed limit on

the data transfer in order to maximize the computer’s performance. After imposing a 100ms

interval upon Processing’s information request, the CPU load on the computer went from

approximately 90% to 5% in computational load (Figures 9.1. and 9.2).

10

9 Pictures of representative hardware icons may be found in the Appendix. Figure A.4.3.

10 MaxLink, http://jklabs.net/maxlink/ (accessed April 21, 2011).

http://jklabs.net/maxlink/
http://jklabs.net/maxlink/

Figure 9.1. Processing optimization (before 100ms interval added)

Figure 9.2. Processing optimization (after 100ms interval added)

11

Figure 9.3. Additional Processing code, limits time between data requests

10. OSCulator

 OSCulator is a software that connects many different devices and software together

utilizing the Open Sound Control communication protocol. Open Sound Control (OSC) is a

stable, 32 bit protocol used for interconnecting hardware controller devices to the computer, as

well as software on one or more computers.11 The protocol utilizes UDP/IP (User Datagram

Protocol/Internet Protocol) packets, which are user-defined packets of information sent to/from

computers and devices on the same local network. Because OSC offers reliable, programmable

messages served on a local network, I chose OSC the communication protocol between the

Wiimotes, Max/MSP, and Kyma. The OSCulator software displayed my individualized message

packets, which eased the compositional process. OSCulator also provided a stable location where

I could connect the Wiimotes to the computer and confirm data entry quickly and efficiently.

 In Running Expressions, OSCulator serves three functions. First the software retrieves

Wiimote data and translates the information into OSC messages. Second, OSCulator sends the

translated Wiimote OSC messages to Max/MSP/Jitter. Third, OSCulator routes OSC data packets

received from Max/MSP across to Kyma.

12

11 Open Sound Control, http://opensoundcontrol.org/spec-1_0 (accessed February 03, 2011).

http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0

 In all cases, all messages received from Max/MSP were routed to Kyma as continuous

controllers. Fifty-nine CC (continuous controller) connections were routed from Max/MSP to

Kyma. All Wiimote buttons and motions were sent to Max/MSP except one. Wiimote 1 button 2

was routed directly to Kyma because this button serves a single function, triggering WaitUntil

objects in the Kyma Timeline. The button enables the performer to trigger the beginning of the

next section of music, which frees the performer from adhering to a particular time schedule.

 OSCulator also defined MIDI channels for messages sent to Kyma; however, the

Continuous Controller and MIDI channel information sent to Kyma use Symbolic Sound’s

MIDI-over-OSC protocol, which is why the OSC protocol icon is shown in Figure 10.1, and not

the MIDI protocol icon.12

Figure 10.1. OSCulator Signal Flowchart

13

12 Synthtopia. “Kyma gets OpenSoundControl (OSC) Support.” http://www.synthtopia.com/content/2010/03/05/
kyma-gets-open-sound-control-osc-support/ (accessed April 19, 2011).

http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/
http://www.synthtopia.com/content/2010/03/05/kyma-gets-open-sound-control-osc-support/

 Figure 10.2. OSCulator, part 1. OSC messages received from Max/MSP/Jitter, routed to Kyma.

14

Figure 10.3. OSCulator, part 2. OSC messages received from Max/MSP/Jitter, routed to Kyma.
Wiimote messages received, routed to Max/MSP/Jitter.

15

 Figure 10.4. OSCulator, part 3. Messages received from Wiimotes, routed to Max/MSP/Jitter.

16

11. PacaConnect

 PacaConnect is an OSX "user agent" program for the Mac that provides an advanced

connectivity solution for Symbolic Sound's Paca(rana) device.13 The PacaConnect allows MIDI

messages to be received and sent between Max and the Paca(rana) by serving as a virtual MIDI

patchbay. The software was inexpensive and took care of potential hardware problems as the

PacaConnect only requires one RS45 connector (no MIDI interface). While Figure 11.1 shows

the full connectivity of the software, Running Expressions only utilizes the virtual MIDI

patchbay via the App-to-App connection inside the Mac computer.

Figure 11.1. PacaConnect Signal Flowchart

17

13 PacaConnect, http://www.delora.com/delora_products/pacaconnect/pacaconnect.html (accessed April 21, 2011).

http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html

12. Max/MSP/Jitter

 Max/MSP/Jitter is a visual programming environment for music, audio, and media. I

chose to use Max/MSP/Jitter because of its flexibility in handling multiple tasks simultaneously,

its ability to communicate between devices and software, and its ability to manipulate numbers,

strings, and matrices. While many functions and protocols can be handled within the Max/MSP/

Jitter software, I used Max/MSP/Jitter for three distinct purposes. Max/MSP/Jitter collects and

modifies data received from the heart rate monitor, Nintendo Wiimotes, and accelerometers,

controls musical parameters inside the Kyma environment, and lastly controls the video

projections.

12.a. Data Hub

 Max/MSP/Jitter collects data from the three musical controllers (heart rate monitor, two

Nintendo Wiimotes, and two dual-axis accelerometers). Because previous sections discuss these

three devices communication links as well as their associated software applications, I will focus

instead on the direct communication links to/from Max/MSP/Jitter.

12.a.i. Heart Rate Monitor from Processing

 I used an external java library called MaxLink, which enables communication between

Max/MSP with Processing, to transmit the heart rate information to Max/MSP/Jitter. Max/MSP/

Jitter received heart rate information as integers using the external max object “mxj

jk.link” (Figure 12.a.1).14

18

14 For more information about MaxLink, please visit http://jklabs.net/maxlink/

http://jklabs.net/maxlink/
http://jklabs.net/maxlink/

Figure 12.a.1. MaxLink external object inside of Running Expressions Max/MSP/Jitter
patch.

12.a.ii. Nintendo Wiimotes via OSC messages from OSCulator

 Stated before, Open Sound Control (OSC) is a stable, 32-bit protocol used for

interconnecting hardware controller devices to the computer, as well as software on one or more

computers. Max/MSP/Jitter collects Nintendo Wiimote information via OSC messages sent from

OSCulator. I used an external Max object “OSC-route” created at the Center for New Music and

Audio Technologies (CNMAT) to sort the OSC messages received from OSCulator (Figure 12.a.

2).15

19

15 For more information about the CNMAT downloads, please visit http://cnmat.berkeley.edu/downloads

http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads

Figure 12.a.2. OSC-route external object inside Running Expressions Max/MSP/Jitter
patch.

12.a.iii. JeeNode and Accelerometers from Serial Bus

 Max/MSP/Jitter collects accelerometer data directly via the serial ports located on the

computer. JeeNode Tx messages are sent as 8-bit serial packets at a 38400 baud rate over a

universal serial bus. Max/MSP/Jitter receives these packets as separate pin read-outs with values

between 0-255. The normal resting values of the incoming JeeNode packets were between a

range of ten, usually 130-140, or 117-126.

 I used the leg’s motion as triggers, creating a bang on the upswing of each leg, as the

motion produced a predictable, although not completely reliable, pattern of numbers. I used the

‘past’ object in Max to trigger the bangs. Based upon tracking the data with both walking and

running motions, the peaks of data were more consistent with the upswing of the knee, not on the

down step of the foot, where I encountered inconsistent double peaks per footstep (Fig. 12.a.4.).

20

Even though I used a more consistent stream of numbers to trigger footsteps, the data continued

to prove problematic.

 Throughout the project, the data coming from the two accelerometers/JeeNode wireless

microcontroller boards proved the most difficult to control. First, the physical location of the

accelerometers attached on the legs could slightly change between performances. The variability

of location was due less to the placement of the accelerometers on the legs than the constant

motion of the performance. I helped minimize the physical location variability of the

accelerometer with creating close-fit pouches for holding the JeeNodes in place.

 Figure 12.a.3. JeeNode Tx and Accelerometer Pouch

 I also found slight differences in incoming data whenever I changed the 9V batteries

powering the JeeNode devices. The initial change of batteries processed more frequent ‘spikes’

in data. I define a spike as a sharp increase or decrease in number without any spontaneous

motion of the accelerometer. For example, at rest, the accelerometer outputs data generally

between 130-140, or 117-126. I encountered data spikes with values above 200 while the

accelerometer was in rest position (Fig. 12.a.4.). These value spikes occurred more frequently

with fresher batteries. As a reaction, I minimized these peaks by cutting out any incoming data

above 200.

 Third, I discovered that after each battery change, the ‘past’ object threshold had to be

adjusted to stabilize the triggering function. It is possible that the physical shifts of the

21

accelerometer while placing the device inside the pouch could account for subtle differences in

threshold values changing. However, the increase in the frequency of ‘spikes’ suggested that the

variability of the device’s power also caused a shift in the incoming data streams.

 Due to the physical variables inherent in using these devices, I was unsuccessful in

developing a stable platform with which to get consistent data streams. While I was successful in

processing simple triggers with simple motions, the physical act of running and therefore, the

increased tempo of trigger events, proved problematic to control. The instability effected the

sounds in my Feet Exposition and Development sections. The playback of the video, which was

directly linked to the motion of the legs developed an irregular or choppy playback. In addition, I

could not rely on the feet to provide a stable bpm tempo with which to lock the music to.

Therefore, I could not create a direct connection between sound modifications (like delay, echo,

or tempo mapping) and the physical motion of the legs, limiting the number of direct performer-

to-sound associations potentially perceived by the audience.

Figure 12.a.4. Data stream table of the right leg accelerometer. Maximum values show motion of the leg
downward, and the minimum values show motion of the leg upward.

22

12.b. Musical Parameter Controller

 The second purpose of Max/MSP/Jitter was to control musical parameters inside the

Kyma environment. Max/MSP sent two types of control messages to Kyma, MIDI messages and

OSC messages. All MIDI messages sent to Kyma were sent via the PacaConnect software. All

other control messages specific to musical parameter controls (like panning, filter cut-off

frequency shifts, and file playback rates) were sent via OSC messages using the OSCulator

software.

 The only external Max object not previously mentioned used in the creation of these

controls was the “randdist” object. The “randdist” object is a random number generator created at

CNMAT. I used this object for average foot distance displayed on the main video monitor as well

as video jitter interpolations occurring when the video is paused. The video jitter simulates

normal human eye scanning while in rest position. The perception of the video moving left to

right with some vertical jitter uses a normal distribution of random numbers.

 All data collection functions and musical controls were placed inside of the

“Controller_Kyma33_End4b.maxpat” Max 5 patcher included on the DVD. Figures A.1.1 – A.

1.i.19 iconically represent the Max 5 patcher used for the final Master’s recital performance.

12.c. Video Projection Controller

 The third and final function of Max/MSP/Jitter was to control the video playback of

several different movie files across several videoplanes. For controlling multiple videoplanes

inside a 3D projection environment, I initially employed HC Gilje's Video Projection Tools.16 HC

Gilje's VP Tools offered a flexible and direct way for me to project multiple videoplanes on a

single, expandable screen. While his application was meant for generic use, I chose to modify his

patch and subpatchers because I was not readily familiar with gl.videoplanes and gl.render

objects insider Jitter. Having a pre-existing working template enabled me to get quick, working

results while learning how to work with video inside Jitter. In one sense, I was reverse

23

16 HC Gilje, Video Projection Tools, http://hcgilje.wordpress.com/resources/video-projection-tools/ (accessed
November 2, 2010).

http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/

engineering his patch in order to work with videoplanes, scraping away the unneeded particulars

for use in my Terminal Project. From a different viewpoint, I was learning how to build an

optimized video system for use with multiple software/hardware components.

 The work spent cleaning up these patches was worth the knowledge uncovered for not

only learning video projection necessary for my Terminal Project, but also the work strengthened

other skills integral to creating a computer music-system, including interface design,

documentation, and system optimization. While I spent countless hours cleaning up HC Gilje's

patches before I was able to modify them, the result was clean templates. These clean templates

provided me with a strong starting point from which I created the video projection for Running

Expressions.17

 The cleanup documentation is shown with Figures 12.c.1 – 12.c.7. All other

documentation of Running Expressions video projection Max/MSP/Jitter patches are contained

in Figures A.2.1 – A.2.l.1, located in the Appendix.

Figure 12.c.1. Videoplane cleanup documentation. HC Gilje’s patch in Presentation mode.

24

17 These templates are marked and included in the accompanying DVD.

Figure 12.c.2. Videoplane cleanup documentation. HC Gilje’s patch in Editing mode.

Figure 12.c.3. Videoplane cleanup documentation. Cleaned-up patch in Editing mode.

25

Figure 12.c.4. Movie source cleanup documentation. HC Gilje’s patch in Presentation mode.

Figure 12.c.5. Movie source cleanup documentation. HC Gilje’s patch in Editing mode.

26

Figure 12.c.6. Movie source cleanup documentation. Cleaned-up running movie patch in Editing mode.

27

Figure 12.c.7. Movie source cleanup documentation. Cleaned-up LCD movie patch in Editing mode.

13. Kyma

 Kyma is a graphical programming environment for live, interactive sound generation and

manipulation. I used Kyma to not only help with composing sound material found throughout the

work, but I used the system for the real-time control of audio for an eight-channel performance.

Kyma also sent Max/MSP/Jitter fourteen distinct MIDI messages that were used to trigger

various video controls.

 I chose to use the Kyma Timeline for the performance. Inside the Timeline, I delineate

sections using WaitUntil Sound objects, as I am able to control when the next section will begin,

freeing the performer from adhering to a particular time schedule. The Timeline also facilitated

the triggering of the fourteen MIDI notes (Figure 13.1). While there isn’t enough space to

adequately describe the various sounds, Figures 13.2 – 13.20 briefly showcase the sound material

created inside Kyma.

28

Figure 13.1. Kyma TL, with WaitUntil Sound track and MIDI note track highlighted. The timeline
duration does not matter because each section’s duration is determined by triggering WaitUntil Sounds.

Figure 13.2. WaitUntil Sound Object. Wiimote 1 button 2
triggers each section, although mapped as !WiiButtonA
inside Kyma.

29

Figure 13.3. MIDI Output Pitch, serves as video command
trigger, which is mapped inside Max/MSP/Jitter.

Figure 13.4. Heartbeat Sound, first electronic sound heard in
RunningExpressions.

30

Figure 13.5. Heartbeat Exposition Main Sound, Vocoder with Delays

31

Figure 13.6. Heartbeat Exposition Sequencer

 Figure 13.7. Heartbeat Low Rumble

32

 Figure 13.8. Road Environment Ambient Sound

Figure 13.9. Selectable Foot Sounds. Accelerometers serve as sound triggers.

33

Figure 13.10. Feet Exposition Waltz

Figure 13.11. Selectable Children Sounds. Eleven sounds triggered and panned
by Wiimote 2.

34

Figure 13.12. Development Section for Trombones, Piano, and Strings

 Figure 13.13. Aorta Sound Transition

35

Figure 13.14. Development Section Climax, part 1

Figure 13.15. Development Section Climax, part 2

36

Figure 13.16. Crashing Forests Sounds, Randomly Selected

Figure 13.17. Final Piano Chord. Both Wiimotes’ A
buttons required to trigger sound.

37

Figure 13.18. Wind Environment Sound. Amplitude increases in wind sound cause sound to pan from
Left to Right.

Figure 13.19. Exposition Sequencer Revisited

38

Figure 13.20. Exposition Heartbeat Vocoder Revisited

39

PART IV. COMPOSITION AND PERFORMANCE STRUCTURE

 While Running Expressions is not traditionally notated, the composition becomes more

solidified with every performance. I am developing towards a more codified version through

performance because each performance helps to provide immediate feedback about the

directions for the musical narrative. I am still working towards creating an objective performance

notation so that a different player could perform this work.

 My compositional methods for Running Expressions can be broken down into three parts.

First, I acquired sound recordings based upon my ideas, and I expounded upon these sounds

inside of Kyma. Second, I drew an annotated structural sketch of how I envisioned the music

flowing, with my notes describing the sounds, the parametric controls, and the programming

implementations. Third, I worked with my sounds and sketches to develop a working version,

complete with the various software components, alternative hardware controllers, and sound

controls mapped out. Tweaks and changes of all sections occurred throughout the compositional

process.

Figure 13.21. Kyma TL, with Sections Labeled

40

14. Section I: Exposition

 Because recent technologies lack performance conventions, the music can be, at times,

difficult to access. Yet, the lack of conventions enables new ways to showcase a performance and

gives freedom to mold the technology to the performance. Perceiving electronic performances in

this way, using alternative hardware controllers necessitates an exposition of the device inside

the composition. The device exposition helps establish a musical vocabulary with which the

audience may gain access to the music. The first section of Running Expressions serves as an

exposition of the various hardware devices used in the composition.

14.a. Heart Exposition

 I chose to initially emphasize the heart rate monitor and its control over the playback and

tempo of the music. The heart rate monitor allowed me to directly connect the body to the music,

and I saw this as paramount to the introduction of Running Expressions. If the heartbeat equals 0,

the music will not play or will fade away if present. First, the heartbeat rate controls the playback

rate of a heartbeat audio analysis file, using the SumOfSines object in Kyma (Figure 13.4). The

heart rate then is mapped to control the tempo of delays and sequencer material throughout the

first section. The Wiimote acts as a music conductor, signaling the changes of the chords of the

music, and facilitating timbre changes in the main rhythm through shifting EQ filter cut-off

frequencies.

14.b. Feet Exposition

 After introducing the heart rate monitor and the Nintendo Wiimotes, I focus attention on

the accelerometers located on the performer’s legs. There is an exposition of real environment

sounds (ambient and footsteps), and the audience hears and sees that the audio and the video

playback are directly tied to the accelerometers. After a brief introduction, the environmental

sounds fade and a foot waltz begins. Because of the instability of accelerometer triggers, the

subsequent sounds irregularly accent the other sounds in this section. The video immediately

supplements the narrative by revealing a school playground and foreshadows later movements by

showing Spencer’s Butte in the background.

41

15. Section II: Development

15.a. Running on Dillard (trombones, strings, piano)

 With the exposition of all three devices inside the composition, I move toward developing

the music and the musical journey. Compositionally, I shift my material to augment the physical

changes of a distance run. Climbing, internal dialogue, and moving from the presence of

civilization can all occur within a distance run, and I wanted to have this shift also coincide with

the intermedia elements. First, I shift the video away from the suburban setting of Eugene to the

wooded views of a country road. Musically, I created a darker tone with the granulation of

recorded trombone material, which helped the emphasis shift from external elements of ambient

sounds to internal developments taken place inside the runner’s mind.

 This particular section is improvised by the performer. While there are eight static chords

the strings may play and a small, randomized pitch set of piano notes, the performer is free to

play this section how he/she wishes. The chord changes and the overall structure of the section I

performed had become solidified during rehearsals, and I instead used piano note timings of

randomly selected pitches to inform the phrasings of my improvised performance.

 Because the Wiimote’s roll effected the time index of the trombones, I had some control

over the pitch material inside the granulations. I included a performance gesture that visibly cued

a trombone pitch change, and the realized note from this gesture served as the section’s harmonic

dominant. Because of the continual shifts in granulation of the audio, the perception of a strong

dominant became more solidifying than any chordal structure for the section. The trombone

gesture and harmonic dominant enabled a closing section through alternating between the V

(trombone gesture) and I (strings).

15.b. Running on Spencer’s Butte (Climax)

 In the final development section, I attempted to completely link the run to the music. The

builds in tempo, instrumentation, amplitude, and rhythm of the music parallel the physical and

virtual increase in running (video portrayal of running Spencer’s Butte). Not only does the music

42

serve as a literal translation to the run, but the figurative suggestions of the psychological

impacts on the mind while running can also be found inside the music.

16. Section III: Recapitulation/Coda

 Like in most runs, there is a return to home. Musically, I wanted to recapitulate the first

theme in its entirety, much like a sonata form, but I instead chose to lightly reintroduce the

sequencer and sounds found at the beginning of the work. The reuse of exposition materials

serve not just the function of a musical return, but also suggest a physical return to home, as

shown by the video’s return to the suburban streets.

 In addition, the reuse of materials suggest a changed emotional state, for in running, after

accomplishing a goal, there is a level of joy achieved. The video manifests that joy through a

switch from 1st person perspective to 3rd person perspective. The internal journey of the

individual runner is an objectively shared journey by all those who run. The section’s materials,

the reuse of music found in the exposition, and the altered vantage point of the video function

also as a coda, offering an additional insight to the musical journey and placing the listener inside

a different space from where he/she began.

43

APPENDIX

A.1. Controller_Kyma33_End4b.maxpat Figure Documentation

Figure A.1.1. Controller_Kyma33_End4b.maxpat Main Patch Window

44

Figure A.1.2. Performance Setup Order Patch Window

45

Figure A.1.3. Color Legend for Master Controller Max Patch

46

A.1.a. Exposition Sequencer

Figure A.1.a.1. Exposition Sequencer Patch Window. The ‘matrixctrl’ object controls the on/off messages
of fixed notes inside the sequencer. The sequencer was built inside Kyma.

47

 Figure A.1.a.2. Sequencer Control Patcher

 Figure A.1.a.3. Wiimote 1 Controls Presets Patcher

48

 Figure A.1.a.4. Sequencer Tempo Control Patcher

 Figure A.1.a.5. Tap Tempo Sequencer Control Patcher

49

A.1.b. JeeNode Accelerometers

Figure A.1.b.1. JeeNode Patch Window, in Presentation mode

50

Figure A.1.b.2. Serial Data Input Module

Figure A.1.b.3. Serial Port Formatting Menu Patcher

51

Figure A.1.b.4. Serial Port Formatting Message Patcher

Figure A.1.b.5. Serial Channel Data Display Module

52

Figure A.1.b.6. Accelerometer Threshold Counter Patcher

53

Figure A.1.b.7. Foot Distance Calculator Patcher

Figure A.1.b.8. Master Foot Distance Display Module 1

54

Figure A.1.b.9. Master Feet Distance Calculator per
Section Patcher, video control

Figure A.1.b.10. Master Accelerometer Control and Routing
Module 2

55

 Figure A.1.b.11. Feet Accelerometer Tempo Control Patcher

56

Figure A.1.b.12. Master Feet Counter
Calculator Patcher, controls video

Figure A.1.b.13. Master Feet Distance
Calculator Patcher, lcd display

57

Figure A.1.b.14. Accelerometer Sends to Kyma Patcher part 1. When triggering sounds inside Kyma,
Max/MSP must reset non-zero values back to zero in order to re-trigger a Kyma Sound object.

 Figure A.1.b.15. Accelerometer Sends to Kyma Patcher part 2

58

 Figure A.1.b.16. Master Accelerometer Control Module 3

Figure A.1.b.17. Master Feet Counter
Control Patcher

59

Figure A.1.b.18. Master Feet Counter
Test Patcher

60

A.1.c. Heart Rate Monitor

Figure A.1.c.1. Heart Rate Routing Patch Window. Communication shows information received from
Processing, and routing to OSCulator.

61

Figure A.1.c.2. Heart Rate Controls
Movie Playback Patcher

Figure A.1.c.3. Heart Rate Controls Heartbeat/Aorta Audio Playback Patcher

62

 Figure A.1.c.4. Heart Rate Controls Switch Gate Patcher

 Figure A.1.c.5. Master Heartbeat Audio Volume Control Patcher

63

A.1.d. Control Window

Figure A.1.d.1. Performance Control Patch Window, in Presentation mode

64

Figure A.1.d.2. Performance Control Patch Window, in Performance mode

65

Figure A.1.d.3. Performance Control
Timer as Counter Patcher

Figure A.1.d.4. Performance Control Timer as Time
Patcher

66

A.1.e. MIDI

Figure A.1.e.1. MIDI Controls Patch Window, all Make Note messages Sent to Kyma via PacaConnect.

67

A.1.f. Video Control

Figure A.1.f.1. Video Control Patch Window, overview of Window layout

Figure A.1.f.2. Video Control MIDI routing, part 1

68

Figure A.1.f.3. Video Control MIDI routing, part 2

69

Figure A.1.f.4. Video Section Command Descriptions Patcher

70

Figure A.1.f.5. QuickTime Movie ‘qmetro’ Toggle Module

Figure A.1.f.6. QuickTime Movie #1 ‘qmetro’ Toggle
Patcher. Controls Running Movie #1.

Figure A.1.f.7. QuickTime Movie #2 ‘qmetro’ Toggle
Patcher. Controls Running Movie #2.

71

Figure A.1.f.8. QuickTime Movie #4 ‘qmetro’ Toggle
Patcher, note Movie #3 does not exist. Movie heartbeat.

Figure A.1.f.9. QuickTime Movie #5 ‘qmetro’ Toggle
Patcher. LCD display heart rate.

Figure A.1.f.10. QuickTime Movie #6 ‘qmetro’ Toggle
Patcher. LCD display meters.

72

Figure A.1.f.11. QuickTime Frame Rate Multiplier Control Module

Figure A.1.f.12. QuickTime Movie #1 Frame Rate Multiplier
Control Patcher

Figure A.1.f.13. QuickTime Movie #2 Frame Rate Multiplier
Control Patcher

Figure A.1.f.14. Performance Control Window Comment Field Module

73

Figure A.1.f.15. QuickTime Movie Selection Module

Figure A.1.f.16. QuickTime Movie #1 Selection Patcher

Figure A.1.f.17. QuickTime Movie #2 Selection Patcher

74

Figure A.1.f.18. QuickTime Movie ‘srcrect’ Pixel Jitter Toggle Module

Figure A.1.f.19. QuickTime Movie Fade Control Module

Figure A.1.f.20. QuickTime Movie Main Mixer Fade Control Patcher

75

 Figure A.1.f.21. QuickTime Movie Running Movie Fade Control Patcher

Figure A.1.f.22. QuickTime Movie Heartbeat Movie Mixer
Fade Control Patcher

76

Figure A.1.f.23. QuickTime Movie Heartbeat Movie Fade
Control Patcher

 Figure A.1.f.24. LCD Display Fade Control Patcher

Figure A.1.f.25. Feet Accelerometer Section Distance Counter Reset Module

77

Figure A.1.f.26. Miscellaneous QuickTime Movie Control Module

Figure A.1.f.27. Master Video Control Switch Module

A.1.g. Wiimote Master

Figure A.1.g.1. Wiimote Master Control Patch Window

78

Figure A.1.g.2. All-Mute Wiimote Master Control Module

Figure A.1.g.3. Exposition Fade-Out Wiimote Master
Control Module

79

Figure A.1.g.4. Final Piano Chord Wiimote Master Control
Module

Figure A.1.g.5. Butte Pan Video Fade-In
Patcher

80

A.1.h. Wiimote 1

Figure A.1.h.1. Wiimote 1 Control Patch Window, overview of Window layout

Figure A.1.h.2. Wiimote 1 Heart Rate Monitor Exposition Control Module

81

Figure A.1.h.3. Wiimote 1 Feet Exposition Control Module

Figure A.1.h.4. Environment Sound Select Patcher, in
Feet Exposition

82

 Figure A.1.h.5. Feet Sound Mute Patcher, in Feet Exposition

Figure A.1.h.6. Wiimote 1 Development Section Control Module, part 1

83

Figure A.1.h.7. Wiimote 1 Development Section Control Module, part 2

 Figure A.1.h.8. Wiimote 1 Development Section Control Module, part 3

 Figure A.1.h.9. String Mute Patcher

84

 Figure A.1.h.10. Panning of Trombones Control Patcher

Figure A.1.h.11. String Harmony Pitch Selection Patcher

85

Figure A.1.h.12. Wiimote 1 Development/Climax Section Control Module

A.1.i. Wiimote 2

Figure A.1.i.1. Wiimote 2 Control Patch Window, overview of Window layout

86

Figure A.1.i.2. Wiimote 2 Heart Rate Monitor Exposition Control Module

 Figure A.1.i.3. Filter Control Presets Patcher

87

 Figure A.1.i.4. Filter Preset Selection Patcher

Figure A.1.i.5. Interpolation Between Presets Patcher

88

Figure A.1.i.6. Time Constant Parameter Interpolation Patcher

 Figure A.1.i.7. Side Level Parameter Interpolation Patcher

89

 Figure A.1.i.8. Bandwidth Parameter Interpolation Patcher

Figure A.1.i.9. Wiimote 2 Feet Exposition Control Module

90

 Figure A.1.i.10. Children Audio File Selection Patcher

Figure A.1.i.11. Road Ambience Sound Playback Rate
Interpolation Patcher

91

Figure A.1.i.12. Wiimote 2 Development Section Control Module

 Figure A.1.i.13. Panning of Trombones Control Patcher

92

Figure A.1.i.14. Wiimote 2 Development/Climax Section Control Module, part 1

Figure A.1.i.15. Wiimote 2 Development/Climax Section Control Module, part 2

93

Figure A.1.i.16. Trumpet Time Index
Selection Patcher

Figure A.1.i.17. Trumpet Time Index Interpolation
Patcher

94

Figure A.1.i.18. Breath Rate Calculator
Selection Patcher

 Figure A.1.i.19. Breath Rate Interpolation Patcher

95

A.2. VPT_4.1b5_RunningExpressions.maxpat Figure Documentation

Figure A.2.1. VPT_4.1b5_RunningExpressions.maxpat Main Patch Window, in Presentation mode

96

Figure A.2.2. VPT Main Patch Window, in Patcher mode, part 1

97

Figure A.2.3. VPT Main Patch Window, in Patcher mode, part 2

 Figure A.2.4. VPT Keyboard Shortcuts

98

Figure A.2.5. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 1

99

Figure A.2.6. Main ‘jit.window’ and ‘jit.gl.render’ Control Patcher, part 2

100

 Figure A.2.7. Custom Coordinates Control Patcher

Figure A.2.8. Custom Coordinates Input Patcher

101

 Figure A.2.9. Conditional Statement Custom Coordinates Patcher

A.2.a. Videoplane Module: Running

Figure A.2.a.1. Videoplane Running, in Presentation mode

102

Figure A.2.a.2. Videoplane Running Patch Window, overview of Window layout

 Figure A.2.a.3. Videoplane Position Module

103

Figure A.2.a.4. Videoplane Color Swatch Module

 Figure A.2.a.5. Videoplane Color Masks Patcher

104

 Figure A.2.a.6. Videoplane ‘jit.gl.render’ Control Module

 Figure A.2.a.7. Videoplane Positioning Control Module

105

Figure A.2.a.8. Videoplane Movie
Masks Module

A.2.b. Videoplane Module: Heart Rate

Figure A.2.b.1. Videoplane Heart Rate, in Presentation mode

Figure A.2.b.2. Videoplane Heart Rate, Positioning Control
Module, with ‘pictslider’ object

106

Figure A.2.b.3. Videoplane Heart Rate, ‘jit.gl.render’ Control Module

107

Figure A.2.b.4. Videoplane 3D Positioning Control Module

Figure A.2.b.5. Videoplane Custom Corner Positioning Control Module

108

A.2.c. Videoplane Module: LCD

Figure A.2.c.1. Videoplane LCD, in Presentation mode

A.2.d. Preset Module

Figure A.2.d.1. Preset Module, in Presentation mode

109

 Figure A.2.d.2. Preset Module, in Patcher mode, part 1

110

Figure A.2.d.3. Preset Module, in Patcher mode, part 2

111

Figure A.2.d.4. Preset Module Controls Patcher

112

Figure A.2.d.5. Preset Module Recall Patcher

Figure A.2.d.6. Preset Module Data Confirmation
Patcher

113

A.2.e. Movie Source Module: Running #1

Figure A.2.e.1. Movie Source Running Patch Window, in
Presentation mode

Figure A.2.e.2. Movie Source Running Patch Window, in Patcher mode

114

 Figure A.2.e.3. Movie Source Select Module

Figure A.2.e.4. Movie Source External Select Control
Module

115

 Figure A.2.e.5. Movie Source Video Control Variables Module

Figure A.2.e.6. Movie Source Variables Assignment Patcher

116

 Figure A.2.e.7. Movie Source Video Position Interpolation Calculator Patcher

117

Figure A.2.e.8. Movie Source Position
Interpolation Timer Patcher

Figure A.2.e.9. Movie Control Module

118

 Figure A.2.e.10. Interpolation for ‘srcrect’ X-Axis Jitter Patcher

119

 Figure A.2.e.11. Interpolation for ‘srcrect’ Y-Axis Jitter Patcher

120

A.2.f. Movie Source Module: Running #2

Figure A.2.f.1. Movie Source Running #2 Patch Window, in Patcher mode

121

 Figure A.2.f.2. Wiimote 1 Controls Panning Video Patcher

 Figure A.2.f.3. Wiimote 1 Controls Kyma 8-channel Panning Patcher

122

A.2.g. Movie Source Module: Heart Rate LCD display

Figure A.2.g.1. Movie Source Heart Rate LCD Display, in Patcher mode

123

A.2.h. Movie Source Module: Heartbeat Movie

Figure A.2.h.1. Movie Source Heartbeat Patch Window, in
Presentation Mode

Figure A.2.h.2. Movie Source Heartbeat Patch Window, in Patcher Mode

124

 Figure A.2.h.3. Movie Select Heartbeat Module

 Figure A.2.h.4. Movie Heartbeat Video Control Variables Module

Figure A.2.h.5. Movie Control Heartbeat Module

125

A.2.i. Movie Source Module: Distance LCD display

Figure A.2.i.1. Movie Source LCD Patch Window

A.2.j. Cue List Mixer Module

Figure A.2.j.1. Cue List Mixer Patch Window, in
Presentation mode

126

 Figure A.2.j.2. Cue List Mixer Patch Window, in Patcher mode

A.2.k. Mixer Module: Running

 Figure A.2.k.1. Heartbeat Movie Mixer Patch Window

127

A.2.l. Mixer Module: Heart

 Figure A.2.l.1. Running Movie Mixer Patch Window

128

A.3. Master’s Project Proposal

Terminal Creative Project Proposal
M.Mus. in IMT, University of Oregon

Jon Bellona

Project Objective:
For my terminal creative project in Intermedia Music Technology, I will compose a musical work
translating the physical and physiological experience of running into musical performance. The
piece will explore the creative potentials afforded by data gathered from physiological monitors
and digital motion sensors and mapped to control audio files and musical parameters in real time.

Introduction: Running and Art
 Endurance running as realized in sport and the aesthetic principles of Western art and
music both have roots in ancient Greece. Greek writing influenced the Western concepts of
intervals and views on musical affectation.18 Styles of European sculpture and architecture
copied Greek forms. Ancient Greek scripture helped lay the foundation for Western literature.19

 The origins of modern endurance running also began in Greece. The legend of
Pheidippides, who ran 26 miles20 to Athens to announce the Greek victory at Marathon, inspired
the modern marathon race. Today there are thousands of 26.2 mile marathons across the world
with millions of participants. Modern endurance running has spawned its own culture, complete
with its own language, literature, and aesthetic. With running and Western music principles
sharing historical roots I proposed the question, “How can running shape the music we create?”
 Digital technologies provide a vehicle for answering this question. Advances in music
technology have lead to the development of new electronic instruments, new compositional
tools, and new styles. Composers using digital technology have at their disposal tools that both
facilitate and inform creative decisions in their pursuit towards art. Integration of new
technologies has changed how composers both think about and compose music. Through digital
data selection, acquisition, modification, and mapping to create and control music, composers
now shape streams of data into musical journeys.
 The application of technology in running, specifically digital monitoring systems used in
research on the human body, reveal that the body produces constant data. Heart rate, body
temperature, oxygen levels, neurotransmitters, brainwaves: all of these internal processes can be
recorded and stored. The body’s physical movement may also be captured using sensors
measuring distance, time, and acceleration. Both external movement and internal body data may

129

18 J. Peter Burkholder, Donald Grout, Claude Palisca, eds., A History of Western Music, 7th ed. (New York, NY:
W.W.Norton, 2006).

19 H. James, Sarah Lawall, Lee Patterson, eds., The Norton Anthology of Western Literature, Volume 1 (New York,
NY: W.W.Norton, 2006).

20 Primary evidence of historian Herodotus suggests that Pheidippides actually ran 145 miles to Sparta and back
requesting troops for the famous 490 B.C.E. battle against the Persians.

be mapped to control non-physiological variables, like musical parameters. The experience of
running can thus be recorded, modified, and digitally mapped to create music.
 Through technology, running and music have an opportunity to merge. Yet, this time, the
relationship between music and running will not be its historical influence, but rather will be a
modern alliance, creating music from data emitted by the human body. The exploration into the
musical possibilities of physiological monitors and digital motion sensors provide an excellent
avenue with which to compose new electronic music.

Outline of Project Proposal
 I will use physiological monitors and digital motion sensors to translate the human
activity of running into a musical performance. Building upon histories of gestural performance
and parametric musical relationships, I will collect data of the physiological status of a runner in
real time and map this data to create an original composition to be performed live. The
compositional process will involve several distinct steps.
 First, I will acquire data from the human body in real time. The word ‘acquire’ here
means to track the internal and external components of the body as streams of data and transfer
this information into the computer. The streams of ‘human body’ data I am specifically interested
in acquiring relate to running: heart rate, arm swing acceleration, foot cadence, pace, and relative
distance. To this end, I will investigate various physiological monitors, digital motion sensors,
and preexisting digital controllers as they relate to the human body in motion. These monitors
and controllers will include heart rate monitors, foot pods, oximeters, FSR sensors, and Nintendo
Wii controllers.
 Next, I will research and implement various transmission protocols in order to transmit
the data into the computer for musical mapping. These transmission protocols will include, but
are not limited to, the ANT+ wireless protocol, RF transmission, RS-232 serial transmission,
Bluetooth and the OSC protocols. My research on transmission protocols will influence the
computer software I will adopt for polling the data.
 Once the streams of human body data are inside the computer, I will explore the various
ways I can modify the data in programming environments learned during the course of my
studies at the University of Oregon. Several software/hardware systems I will integrate for the
composition and performance include Max/MSP/Jitter, Processing, and Kyma. Implementing
and combining these programming environments will be important in the final execution of the
piece. Max/MSP/Jitter will be the central data hub, modifying the data in various ways, and
routing the information to and from Processing, to and from Kyma. Processing will draw
supporting visuals, making the performance a multimedia experience. Kyma will map the data to
control various parameters of the digital sound processing of real-time audio. Kyma will also
serve as the audio generator and mixer, outputting the sounds of the composition for an 8-
channel loudspeaker performance.
 My creative terminal project will permit me to harness new, specific data streams in order
to explore their creative use, and will also allow me to explore the expositions of gestural
performance through a preexisting language: the perceptual and cultural language of running.
Because I hope to articulate the journey of a run through the use of physiological monitors and

130

digital motion sensors, I will study the design trends of new digital musical instruments in order
to learn more about digital mapping strategies and performance practices.
 My creative terminal project will attempt to creatively combine my passions of running
and technology and will be the culmination of my coursework and studies here at the University
of Oregon. The project will employ digital sensors and protocols I first uncovered during my
graduate studies. The composition and performance will utilize programming languages and
graphic environments that I learned during the program’s coursework. My terminal project
would not have been possible before coming to Oregon, and it is the hope that the work will
display the breadth of my technical, creative, and performance skills polished through the
Intermedia Music Technology program.

 In addition to the creation of a final composition and performance, I will document the
compositional process, recording research on physiological monitors, transmission protocols,
mapping strategies, and compositional methods used and explored. I will compile the various
processes of my project into a small portfolio. This portfolio will include descriptions of
mapping strategies used, an annotated list of hardware equipment, software, and data protocols
considered, and layouts of original programs created with Max/MSP/Jitter and Processing. I will
also capture audio and video recordings of the final performance. This documentation will
supplement my creative terminal project and will serve as a resource for anyone wishing to
explore the creative applications afforded by these tools. The creative terminal project also lays a
working foundation, as after the completion of this project and my Masters degree, I hope to
continue composing using these tools, strategies, and techniques.

131

A.4. Graphical Icon Legend

Figure A.4.1. Hardware icons used throughout the documentation

132

Figure A.4.2. Connection Standards and Protocols icons

133

 Figure A.4.3. Software icons

134

A.5. Resource URLs

 ANT+ wireless: http://www.thisisant.com/pages/technology/what-is-ant

 CNMAT (OSC-route, randdist) Max objects: http://cnmat.berkeley.edu/downloads

 HC Gilje’s Video Projection Tools: http://hcgilje.wordpress.com/resources/video-

projection-tools/

 JeeNode v.4: http://jeelabs.net/projects/hardware/wiki/JN4

 Max/MSP/Jitter: http://cycling74.com/products/maxmspjitter/

 MaxLink: http://jklabs.net/maxlink/

 OSCulator: http://www.osculator.net/

 OSC: http://opensoundcontrol.org/introduction-osc

 PacaConnect: http://www.delora.com/delora_products/pacaconnect/pacaconnect.html

 Polar product - HRM: http://www.polarusa.com/us-en/support/downloads?

product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/

85256F470048B0BC8525747300610169

 Processing: http://processing.org/

 SparkFun - ADXL322 dual-axis accelerometer: http://www.sparkfun.com/products/849

 SparkFun - HRMI: http://www.sparkfun.com/products/8661

 Symbolic Sound (Kyma): http://www.symbolicsound.com/

A.6. Included DVD Contents

 a. Running Expressions .pdf Documentation

 e. External Libraries

 i. CNMAT objects (OSC-route, randdist)

 ii. MaxLink (version 0.36)

 c. Video documentation: Studio 74 performance, April 15, 2011

 d. Stereo and Eight-channel Audio documentation: Studio 74 performance, April 15, 2011

 b. Performance files

 i. Kyma Files (version 6.79)

135

http://www.thisisant.com/pages/technology/what-is-ant
http://www.thisisant.com/pages/technology/what-is-ant
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://hcgilje.wordpress.com/resources/video-projection-tools/
http://jeelabs.net/projects/hardware/wiki/JN4
http://jeelabs.net/projects/hardware/wiki/JN4
http://cycling74.com/products/maxmspjitter/
http://cycling74.com/products/maxmspjitter/
http://jklabs.net/maxlink/
http://jklabs.net/maxlink/
http://www.osculator.net
http://www.osculator.net
http://opensoundcontrol.org/introduction-osc
http://opensoundcontrol.org/introduction-osc
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.delora.com/delora_products/pacaconnect/pacaconnect.html
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://www.polarusa.com/us-en/support/downloads?product=&category=User+manuals&document=/gip/PEUS1kb-public.nsf/web_cat/85256F470048B0BC8525747300610169
http://processing.org
http://processing.org
http://www.sparkfun.com/products/849
http://www.sparkfun.com/products/849
http://www.sparkfun.com/products/8661
http://www.sparkfun.com/products/8661
http://www.symbolicsound.com
http://www.symbolicsound.com

 ii. Max/MSP/Jitter Patches (version 5)

 iii. OSCulator File (version 2.10.6.2)

 iv. Processing sketch (version 1.1)

 f. Template Max Patches

 i. Max/MSP/Jitter template patch for JeeNode & Accelerometers

 ii. Max/MSP/Jitter template patches for Video Projection Tools

136

