

Kinect-Via- :

Max/MSP Performance Interface Series for Kinect’s User Tracking via OSC

 Jon Bellona

University of Oregon

Digital Arts Department

bellona@uoregon.edu

http://deecerecords.com

ABSTRACT

In this paper, I describe a Max/MSP interface series

(Kinect-Via-) for composers wanting to route and map

user-tracking data from the XBox Kinect. The interface

series complements four different OpenNI applications,

namely OSCeleton, Synapse, Processing’s simple-openni

library, and Delicode’s NIMate. All Max/MSP interfaces

communicate using OSC (Open Sound Control)

messages and are performance-ready, meaning that all

routing and system options may be changed in real time.

The Kinect-Via- interfaces offer a tangible solution for

anyone wishing to explore user tracking with the Kinect

for creative application. The aim of the paper is to

discuss features of four different OpenNI applications, to

address potential issues and challenges when working

with the OpenNI framework, and to outline formative

interface issues revolving around video tracking

technology.

Keywords: XBox Kinect, OpenNI, Max/MSP, Live

Interface, Open Sound Control, OSC, OSCeleton,

Synapse, Processing, Delicode, NIMate, Kyma.

1. INTRODUCTION

The objectives of the Kinect-Via- interface series are

threefold: to serve as a ready-made composition tool; to

save users time in building a mapping framework

between compositions; and, to act as a performance

interface. Once Kinect drivers have been installed and

the appropriate interface downloaded,
1
 the Kinect-Via-

interfaces handle all incoming OSC messages from

respective software automatically.
2
 The Kinect-Via-

interface series provides ready-to-use data mapping

objects inside Max/MSP, and each interface provides

controls for communicating with their respective

OpenNI application.

Before jumping into technical specifics, I will first

contextually discuss the need for a Kinect interface.

Next, I will analyze features of the OpenNI framework

by highlighting four OpenNI applications. Third, I will

discuss potential issues of video tracking through a real-

world implementation of a Kinect-Via- interface. As a

guide to the reader, all term definitions used throughout

the paper may be found in section 8.

1 All interfaces may be downloaded at: http://deecerecords.com/kinect
2 I bundled a comprehensive sketch for use with Processing, while all

other software automatically transmit Kinect tracking skeletons.

User tracking is a reality that offers many rewards,

but not without its challenges. My hope is that the

Kinect-Via- interface series hastens your discovery of

new works and furthers your exploration of 3D space. At

the time of this writing, the Kinect-Via- interface series

has been downloaded over 1,000 times. [5]

2. THE INTERFACES

Anyone wishing to skip this article and jump right in

with the open source interfaces may do so. The various

interfaces– Kinect-Via- OSCeleton, Synapse,

Processing, NIMate –may all be downloaded at:

http://deecerecords.com/kinect

Figure 1. Kinect-Via-Synapse interface.

3. WHAT’S THE BIG DEAL?

Tracking users in space is not a new concept. David

Rokeby’s Very Nervous System tracked users with the

computer as far back as 1982,[4] and many other video

and light tracking systems have been introduced since.
3

What’s stimulating about the Kinect is the affordability

of tracking multiple users in 3D space, especially

providing joint coordinates that may serve as real-time

controllers. Ever since the initial Kinect ‘hack,’ [1] there

have been hundreds of projects featuring Kinect user

tracking,
4
 and one-step installs have enabled quick

3 Tracking systems like Imago, smart Junior, and EthoVision

demonstrate available tracking systems, and software like Open CCV
and Isadora take advantage of USB web-cameras.
4 One of my favorite Kinect projects is Robert Hodgin’s Body

Dysmorphia. (http://roberthodgin.com/body-dysmorphia/)

access to the Kinect camera and the OpenNI framework.

So, why a Kinect interface?

The Kinect-Via- interfaces address six major issues

related to composition and performance process with the

Kinect: data access; OpenNI feature access; standardized

protocols; mapping framework; real-time options; and

interaction design practice. With all the projects in

existence demonstrating the Kinect’s user tracking, there

are few, open-source, modular interfaces to support a

creative practice. In addition, provisions to access

OpenNI features by applications are inconsistently

offered or non-standardized, including the portability of

data mapping modules, the controls for real-time

options, and the availability of OpenNI features.

3.1. Plug n’ Play (Data Access)

For anyone beginning to work with the Kinect, a

creative starting point hardly exists. Even with

knowledge of a programming language, many who work

with the Kinect spend more time huddled over the keys

of their computer keyboard than moving in the front of

the Kinect camera. And, while most applications and

libraries now have Kinect drivers bundled or single-

click installers (i.e. OSCeleton, Processing’s simple-

openni, Synapse, NIMate), an interface isn’t provided

for parsing incoming OSC messages. In fact, most

system options are not available unless users create a bi-

directional OSC architecture for the parent software.

The Kinect-Via- interfaces serve as this missing

communication framework, saving time in the creation

of necessary application components. The interfaces

provide immediate data access without having to

program a single line of code.

3.2. Extending OpenNI Feature Access

A frayed thread of continuity exists between OpenNI

applications and the OpenNI framework, as each

OpenNI application selectively chooses features from

the framework to support ad hoc. One application will

allow NiTE hand gesture tracking, while another will

not. One application will transmit CoM data, while

another application will not.

Add in a composition’s requirements and designing a

flexible system becomes a challenge. While one

composition may call for one feature, say multi-user

tracking, the next piece may demand different OpenNI

features. Depending upon the application’s available

features and upon the composition’s requirements, a

user may be required to jump between applications or

translate data from one application to another.

One solution to feature access is data transference.

As each OpenNI application offers different OpenNI

features, being able to port, or transfer, user generated

mappings between applications enables access to more

features of the OpenNI framework. Kinect-Via-

interfaces keep all data mapping objects separate from

the system features of each OpenNI application, so that

custom mappings may be shared between any of the

four different OpenNI applications with a simple cut &

paste.

3.3. OSC Protocol

Using a stable, standard protocol for receiving messages

provides a sustainable and flexible architecture, and all

Kinect-Via- interfaces were built for applications that

support OSC. The four OpenNI applications

(OSCeleton, Synapse, Processing’s simple opennni, and

NIMate) transmit OpenNI data (e.g user skeletons) as

OSC messages. Some applications even allow options to

be set with OSC. If offered by the OpenNI application,

options controls are provided through the Kinect-Via-

interface.

3.4. Mapping Framework

The Kinect-Via- interface series provides out-of-the-box

mapping capability, as all user-tracking OSC messages

received by Max are first unpacked into floating point

numbers and then connected to accessible ‘send’

objects. Max ‘receive’ objects are all that are required to

start mapping joint data. Data ‘send’ object names are

shared between interfaces, so compositional mappings

may be shared between OpenNI applications.

3.5. Real-Time Options

The Kinect-Via- interface series enables real-time

options controls for the four OpenNI applications. For

example, the Kinect-Via-Synapse interface provides

global and individual controls for all options available to

Synapse, without which a user would have to code

his/her own OSC-enabled control panel.

3.6. Interface Design

Lastly, all Kinect-Via- interfaces maintain similar design

scheme. The top level displays performance controls.

The major design decisions– the Vitruvian man,

interface controls, help files, even OSC parsing– remain

consistent between each Kinect-Via- interface to

decrease learn-time and to increase familiarity. Max

‘send’ objects are the same for each Kinect-Via-

interface so that any artist can reuse Max abstractions

and patches between applications.

4. SYSTEM FEATURES

This section outlines the main features of the OpenNI

framework by highlighting the similarities and

differences between four OpenNI applications

(OSCeleton, Synapse, Processing’s simple-openni,

NIMate).

4.1. User IDs and CoM (Center of Mass)

As soon as a user is identified in the tracking space, the

OpenNI framework assigns the user an ID number,

numerically incrementing from 1-16. This unique user

ID follows the user throughout the space, and remains

logged even when a user leaves the Kinect’s field of

vision. In fact, the user ID remains logged for ten

seconds, and currently, this log time remains an

unchangeable OpenNI constant.

Because the OpenNI framework dynamically

assigns user IDs, a user cannot guarantee that he/she

will have the same user ID number for calibration. As

such, explicitly dictating a user ID for mapping without

including re-routing controls should be avoided. All

interfaces address this issue– Kinect-Via-OSCeleton and

-NIMate offers re-routing of user IDs in real time, while

the Kinect-Via-Synapse and -Processing interfaces

dynamically switch between user IDs.

In addition to user ID assignment, OpenNI reports

the center of a user’s body (x,y,z), known colloquially

as CoM (Center of Mass). CoM does not require

calibration. Not all OpenNI applications transmit CoM

data, however. All applications except Synapse make

CoM data accessible.

4.2. The Psi Pose and Auto-Calibration

The OpenNI framework must calibrate a user before

transmitting skeleton coordinates.
5
 Prior to 2012,

OpenNI applications required a user to pose in order to

initialize calibration.
6

Figure 2. A calibration process using the “Psi Pose.”

Now, many OpenNI applications offer auto-

calibration. Auto-calibration calibrates a user

automatically, and the process starts as soon as a user

receives a user ID. In addition, a user is not required to

stand still. Auto-calibration is a great feature for any

user interested in not having to issue a pose in order to

implement joint tracking. Auto-calibration may not be

useful for public art performances, where unwanted

user-calibration can occur.

Between user calibration and skeleton data

transmission, a lag time exists.
7
 For performance, lost

data as a result of calibration lag time may be

unwanted, but user IDs can serve as a stopgap. By

adding a check against the tracking skeleton user ID

and other existing user IDs, one may switch between

user skeletons without requiring re-calibration. This

5 There are fifteen joints currently supported by OpenNI as part of a

user skeleton, even though more joints have been programmed into the

framework. The currently accessible joints are head, neck, torso, left
hand, left elbow, left shoulder, right hand, right elbow, right shoulder,

left hip, left knee, left foot, right hip, right knee, and right foot.
6 The most familiar pose associated with the Kinect is the ‘psi pose,’
named for its relationship to the Greek letter Psi.
7 The lag time is around two seconds, reported from tests across three

applications supporting the auto-calibration feature.

check allows for a seamless (non-latent) transition of

tracking joints between users.
8

In addition to auto-calibration, Processing and

NIMate offer the ability to save and load different

calibration poses. The need for working with different

calibration poses might serve multiple users requiring a

skeleton at different times, especially when multiple

users exist within the tracking space.

4.3. Single-User and Multi-User Tracking

The OpenNI framework supports multi-user tracking,

where multiple skeletons may be present and

transmitted at one time. Yet, there is no standard.

Applications choose to support single-user tracking

(access to only one skeleton), multi-user tracking, or

both. Synapse offers single-user, OSCeleton multi-user,

and both NIMate and Processing offer both.
9

Tracking multiple, moving users has potential

issues. Depending on the position of the Kinect camera,

multiple users inside the space conceal tracking joints,

which may result in lost user IDs. Reliably tracking

more than two users, especially multiple users who

move around and exit the tracking space, will require

additional conditional coding to handle lost joint data,

lost user IDs, and the ten second OpenNI constant that

logs user IDs.
10

The most reliable results for accessing and mapping

skeleton joint data involve one-to-two users inside the

tracking space at any given time. Due to multi-user

mapping challenges and the stability of single-user

tracking, digital ensembles should strongly consider a

maximum of one-two users per computer/mapping

interface.

4.4. Tracking Modes

Tracking modes enable different coordinate data sets for

a user’s joints, offering flexibility in data manipulation.

While the OpenNI framework offers various tracking

modes, including user-defined modes, not every OpenNI

application takes advantage of these modes.

4.4.1. Real-World vs. Projective
11

As best described by Greg Borenstein, “Real-world

coordinates locate the object in 3D space. Projective

coordinates describe where you’d see it on the viewing

plane.” [2] NIMate and Processing offer both real-world

and projective modes, and both are changeable in real

time. The simple-openni Processing library only

presents examples in real-world mode, so in order to

harness the rich sets of data that tracking modes offer, I

scripted a Processing sketch to switch between real-

8 Switching user skeletons in this fashion was tested with three users

using Processing. The feature will be part of an upcoming work, Maia,

by Harmonic Lab and will involve three dancers sharing one tracking

skeleton. http://harmoniclab.org
9 While Processing’s simple-openni library offers the capability to
track multiple skeletons, the Processing sketch complementing the

Kinect-Via-Processing interface currently offers only single-user

tracking.
10 See Section 5.1 for one solution.
11 Some applications choose to use the term “Screen” mode.

“Projective” mode is synonymous with “Screen” mode.

mode and projective modes, controlled by the Kinect-

Via-Processing interface.

4.4.2. Body Mode

Synapse is the most robust application that handles

tracking modes, offering real-world, projective, and a

third, unique mode– body. Body mode sends

coordinates as joint distance measurements relative to

the torso, expressed in milli-meters. All three of

Synapse’s modes may be switched globally or on a

joint-by-joint basis, meaning that individual joints may

send coordinates in different modes.

4.4.3. Coordinate Values

Coordinate set values vary between modes. While

projective mode scales the range of X values to pixel

screen width (0-640), the range of X values for real-

world and body tracking modes are expressed in

negative and positive milli-meter values. The zero point

corresponds to the center point of the Kinect camera.

The same is true for Synapse’s body mode, except that

the zero point always moves relative to the X position of

the torso.

4.5. NiTE Gestures and Joint Triggers

NiTE is one middleware that complements the OpenNI

framework, providing the technological guts of gesture-

based control, where specific gestures may become

actuators
12

. Processing offers the most flexibility in

harnessing NiTE gestures; however, a comfortable

understanding of programming is necessary, as one will

need to code in the supporting functions. NIMate

capitalizes on NiTE by allowing users to switch between

skeletons by using a hand wave gesture.

Gestures may be mapped even without NiTE

functions. Synapse offers actuation messages (back-

forward-left-right) for joints moving directionally in

space. Both the velocity and length required to trigger

these messages may be altered in real time.

4.6. Real-time Options

A performance interface with real-time options has

major benefits, notably the ability to change system

behaviour, quickly test ideas, and resolve unexpected

issues on-the-fly.

NIMate and Synapse make the most out of providing

the user with real-time options. NIMate offers these

options as part of its application, while Synapse only

provides the framework. Kinect-Via-Synapse provides

ready-made access to getting and setting Synapse’s

user-tracking options, and with both global and

individual joint settings controls.

12 ‘Actuators’ here mainly refers to Wanderley’s usage in New Musical

Digital Instruments, [6] but instead of electrical energy, the human
body’s mechanical energy is converted into digital bits used to propel a

mapped action. The actuator in the digital form may be a trigger,

boolean, or gate.

Figure 3. The Kinect-Via-Synapse

global options panel.

4.6.1. Synapse

Kinect-Via-Synapse makes available these real-time

options: tracking mode (body, real-world, projective);

track joints on/off toggle (including individual joint

tracking switches to help save CPU); print tuning info

(prints current joint settings); joint trigger speed (joint

trigger velocity threshold); required length (joint trigger

distance threshold), and depth mode (alternate depth

views from the Kinect camera).

4.6.2. NIMate

NIMate offers the most real-time options, but it is

important to note that any option change will cause the

system to re-calibrate the user. In NIMate’s defense, the

application allows user profiles to be saved and loaded,

ensuring a performance-ready system. Real-time options

available to NIMate include tracking mode (real-world,

projective), joint smoothing, a scalable activation area,

joint mirroring, coordinate scaling, OSC output

formatting, and MIDI controller output.

4.6.3. OSCeleton

While OSCeleton does not offer any real-time options,

the Kinect-Via-OSCeleton interface enables the re-

routing of user IDs in real time. By transferring the

routing of user IDs to the Max interface, the user gains

mapping flexibility over parsed OSC joint messages and

ensures that OSCeleton will not have to rebooted during

a performance due to unmatched user IDs.

4.6.4. Processing

Because Processing is a programming environment and

not a closed application, options can be added and

modified at will; however, the simple-openni library

does not initially provide real-time controls. In order to

provide real-time options for performance, I bundled a

Processing sketch with the Kinect-Via-Processing

interface that enables several real-time options: the

ability to change tracking modes, a toggle for getting

CoM and skeleton joint data, and getting the distance in

milli-meters between hand joints.

5. REAL-WORLD EXAMPLE: HUMAN CHIMES

One example of the Kinect-Via- interface in use is the

interactive sound installation, Human Chimes. Human

Chimes dynamically tracks users' locations (CoM) in real

time with OSCeleton, and the piece maps participants as

sounds that pan around the space according to the

participants' positions. Sounds bounce between all other

participants inside the space, and a Processing sketch

provides user feedback by projecting participants'

movements onto the front wall.

Figure 4. Human Chimes technical layout: Kinect on a

telescoping microphone stand, projector, MacBook displaying

depth mode screen, and Kyma system.

Figure 5. Human Chimes installation. White balls represent

users in the space, which also control the panning location of

emitted sounds.

Several challenges arose while working on Human

Chimes, and highlighting three here may help outline

issues of working with the OpenNI framework.

5.1. Issue #1: Lost User IDs

Because users entered and exited the installation space

at random, there was high risk for lost user IDs and

‘stuck’ user CoM coordinates.
13

 To resolve this issue, I

added a validation check of user CoM coordinates. The

CoM coordinate (or torso coordinate for calibrated

users) equals (0.0, 0.0, 0.0) when a user is lost, even

though the user ID remains logged. Saving user IDs into

13 As previously mentioned, the OpenNI logs user IDs for ten seconds

after a user leaves the tracking space.

a second, conditional-based array for mapping user

coordinates ensured only active IDs would be mapped.

Validating user IDs through a CoM coordinate check is

one method for working around the OpenNI constant

and lost user IDs.

5.2. Issue #2: Projecting Onto The Tracking Space

Transferring the tracking range of the Kinect to a

projection, either onto a wall or onto the tracking space

can be difficult. Projecting objects back onto the

tracking space requires three levels of scaling. First,

real-world X coordinates must be scaled to the tracking

space projection. Second, these coordinates must be

scaled again to the computer display screen width.

Lastly, Z coordinate must be scaled to the computer

display screen height.

One useful tool in mapping user location to

projection location is to create a real-world mapping

box. By demarcating the X and Z coordinate values of

real-world coordinates at the edges of the projection

inside the tracking space, and by setting these

coordinates as a global variable, one can, in effect,

create an invisible bounding box. The bounding box

may be used to map coordinates back onto a projection

covering the tracking space. The box also enables

performance by allowing the range to be easily reset for

any given space.
14

5.3. Issue #3: Limited Tracking Range

While the Kinect supports tracking to about 26 feet

(8000 mm), the stable, accurate tracking range is much

more limited. The reliable, accurate tracking range for

skeleton joints and CoM data reflects a maximum depth

of about 15 feet.
15

 While I have no work around to offer,

understanding this limit is helpful when programming

for music/dance performance or installation art.

Every composition faces its own set of technical

hurdles, and hopefully, the ones addressed here present

possible solutions for working with the Kinect and

OpenNI framework. For more on Human Chimes and to

view the installation documentation, please visit:

http://deecerecords.com/projects#humanchimes

6. AND THE WINNER IS!...

...Well, it depends. Because of the robust complexity of

the OpenNI framework, each application offers different

features. Additionally, every Kinect user has different

needs. To help guide the reader, I have provided a

feature list below, a supplement to sorting out the

various applications. For each case, the applications are

listed in ranking order from left to right, from most to

least useful.
16

14 One can easily map the tracking range, regardless of the performance

space, by running the OpenNI application and notating a user’s CoM or
joint torso coordinates as he/she moves around the space.
15 The distance is based upon location measurement tests, including

Human Chimes installation at three different locales, practice tests, and
other interactive, Kinect-based work.
16 The phrase ‘most to least’ is based upon the experience and the bias

of the author.

N=NIMate, O = OSCeleton, P=Processing,

S=Synapse

FEATURE 1 2 3 4

Multi-user skeleton

tracking

O N P*

Auto-calibration support P N O

Tracking mode support N S P

Relative joint positions S N P*

CoM coordinates O P N

Real-time options support S N P* O

Software reboot time** O S N P

Installation process S N P

NiTE Gesture support P* N

low CPU usage*** S O P N

* possible, but requires additional coding

** O: 7-10 sec., S: 10-12 sec., N: @30 sec., P: @30 sec.

*** based on Activity Monitor of MacBook Pro

(10.6.8)

Table 1. OpenNI feature chart, showing the various application

support of OpenNI features.

7. CONCLUSION

The OpenNI applications I chose to work with are not an

exhaustive list, and there are certain limitations in

creating a second-party interface, most notably the

segmentation of OpenNI features. Making the most out

of the OpenNI framework and its features is an ongoing

process, one that develops alongside the framework. The

Kinect is not quite two years old, but already has proven

to be an exciting tool with tremendous possibilities for

the performance and interactive arts.

Lastly, the Kinect-Via- interface series is a tool. The

interfaces provide the ability to start composing

immediately while delivering instant access to real-time

controls. The series was made with composition and

performance in mind, as well as for any user-level,

including those with little to no programming

knowledge. More experienced users may find the

modular interface time-saving, and especially useful for

experimentation and programming hacks.

Once again, the various interfaces– Kinect-Via-

OSCeleton, Synapse, Processing, NIMate –may all be

downloaded at: http://deecerecords.com/kinect

8. DEFINITIONS

This section outlines terms used throughout the paper,

and each term builds off of previously used terms.

Kinect - The Kinect is a motion sensing device for the

XBox 360. Yet, the Kinect is not just a camera nor a

gaming experience, but a revolution. The Kinect device

enables a new world of possibilities, including 3D

computer vision, user-tracking, gesture analysis, and

even 3D coordinate manipulation in real time.

OpenNI - OpenNI is “a framework that provides an

application programming interface (API) for writing

applications using natural interaction,”[9] and in our

case, that application is the Kinect. OpenNI allows us to

track users in space, grab specific coordinate sets, as

well as extend the existing framework with 'middleware'

software (e.g. NiTE gesture support).

Middleware - Middleware is computer software that

connects various software components with other

applications, thereby extending an application by

enabling multiple processes running on one or more

machines to interact.[3] NiTE is one such middleware

for the OpenNI framework.

NiTE™ (Primesense’s Natural Interaction middleware)

- NiTE is a middleware for OpenNI containing the

“algorithmic infrastructure for user identification and

gesture recognition, as well as the control framework

that manages the tagging of users and the acquisition

and release of control between users.” [8]

OSC (Open Sound Control) - OSC is a stable, 32-bit

protocol used for interconnecting hardware controller

devices to the computer, as well as software on one or

more computers. The OSC protocol was developed by

Adrian Freed and Matt Wright in 2002 at CNMAT

(Center for New Music and Audio Technologies), and

the protocol utilizes UDP/IP (User Datagram

Protocol/Internet Protocol) packets, which are user-

defined packets of information sent to/from computers

and devices on the same local network. [7]

Track - Through the analysis of points collected from IR

lights, the Kinect can distinguish between objects in 3D

space. To track means that a moving body in space

receives a user ID, and whose collection of pixels is

identifiable and separable from all other objects.

Tracking Space - The area in which a user is detected by

the Kinect.

CoM (Center of Mass) - A user’s densest point of the

body, the torso, is sent as a 3D coordinate. This feature

is enabled as soon as the Kinect detects a moving body

in space. Note: In testing motion, a chair rolling across

the tracking space may feasibly send a CoM coordinate.

Calibration - The OpenNI framework must calibrate a

user before specific joint coordinates can be collected

and transmitted. Calibration may be handled

automatically, or through an identified pose, like the ‘psi

pose.’ Note: CoM data does not require calibration, and

CoM is the same as a calibrated torso joint.

User/Tracking Skeleton - A calibrated user shows and

sends up to fifteen joint coordinates. These coordinates

may be sent in a variety of different modes (real-world,

projective, body). The number of skeletons supported is

dependent on the OpenNI application, but a maximum

of sixteen user IDs are supported by the OpenNI

framework.

9. REFERENCES

[1] Adafruit. 2010. We Have a Winner: Open

Kinect driver(s) released. Adafruit Industries

Blog (Nov. 11, 2010). DOI=

http://www.adafruit.com/blog/2010/11/10/we-

have-a-winner-open-kinect-drivers-released-

winner-will-use-3k-for-more-hacking-plus-an-

additional-2k-goes-to-the-eff/.

[2] Borenstein, G. Making Things See. Sebastopol,

USA, 2012, 204.

[3] Campbell, A., Coulson G., and Kounavis M.

“Managing Complexity: Middleware

Explained.” IT Professional, IEEE Computer

Society, 1:5, September/October 1999, 22−28.

[4] Cooper, D. “Very Nervous System,” Wired

Online.

http://www.wired.com/wired/archive/3.03/roke

by.html last accessed August 3, 2012.

[5] “http://deecerecords.com,” Google Analytics.

http://google.com/analytics August 1, 2012.

[6] Miranda E., and Wanderley M. New Musical

Digital Instruments: Control and Interaction

Beyond the Keyboard. Middleton, WI., 2006,

104.

[7] Open Sound Control.

http://opensoundcontrol.org/introduction-osc

August 3, 2012.

[8] Primesense™, Inc. NiTE Middleware.

https://www.futureworld.sg/services/naturalinte

raction/nite August 8, 2012.

[9] Primesense™, Inc. PrimeSense NiTE Controls

1.3.1 User Guide. March 2011.

